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American Educational Research Journal 
Summer 1980, Vol. 17, No. 2, Pp. 153-170 

Uses of Sibling Data in Educational and 
Psychological Research 

ARTHUR R. JENSEN 

University of California, Berkeley 

Methods are explained, with empirical examples,for using sibling data 
on psychometric variables (1) as a covariatefor statistically controlling 
family background in psychological and educational experiments, (2) 
as a meansfor testing the adequacy of age-standardized scores, (3)for 
testing the interval scale property of mental measurements, (4) for 
analyzing correlations into between- and within-family components 
and distinguishing intrinsic from extrinsic correlations between varia- 
bles, and (5) for detecting cultural (i.e., between families) sources of 
variance in psychological tests. 

Researchers generally treat data obtained on related persons, family 
members, or various kinships in general, as pertinent only to research in 
genetics or behavioral genetics. Kinship data are, of course, the main grist of 
research in human genetics (e.g., Erlenmeyer-Kimling & Jarvik, 1963). But 
kinship data can also serve useful purposes in psychometrics and in psycho- 
logical and educational research, quite apart from any concern with genetical 
analysis per se (e.g., Jensen, 1974; 1977). The aim of this paper is to explain 
five such uses of sibling data, with examples based on data obtained by the 
author. 

The most plentiful and easiest kinship data to obtain in the school-age 
population are data on full siblings. A substantial proportion (we have found 
proportions from about .50 to .70 in various California schools) of school 
children have one or more siblings enrolled in the same school. Of course, 
the proportion of children with siblings in the same school is larger for 

This article is based on a paper presented at the annual meeting of the American 
Educational Research Association, San Francisco, April 1979. 
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children in the middle grades, so that is where one should begin to recruit 
subjects for a sibling study. 

(1) SIBLING DATA AS A COVARIATE CONTROL 

In educational experiments we frequently wish statistically to control 
independent variables in order to improve the statistical detection of treat- 
ment effects. Pupils' intelligence or prior level of achievement are commonly 
used covariates for this purpose, as are measures of family background. 
Sibling data may be used as an additional measure of family background 
factors as they affect the particular dependent variable in the experiment, 
for example, scores on a test of scholastic achievement. The covariance (or 
correlation) between the age-standardized achievement scores of the pupils 
in the study proper and of their siblings (preferably the siblings closest in 
age) represents variance due to "family background" factors common to 
siblings from the same family. Or, to put it another way, it is variance due 
to differences between families. Using nearest-in-age siblings, measured on 
the same age-standardized dependent variable, as a covariate control, along 
with other subject variables, such as IQ or the subject's socioeconomic status, 
which may also be included as covariates in the ANCOVA, may increase 
the power of the experiment. This is especially true in the abilities domain, 
where the correlations between siblings are substantial. (For example, the 
mean of the sibling correlations for IQ reported in the literature is +0.49.) 
Sibling data on the dependent variable is often easier to obtain than any 
other family background data. This can be an important consideration when 
there are restrictions on the invasion of privacy, which may be involved in 
obtaining family background data. Sibling scores on the dependent variable 
may serve the same purpose, controlling for family background, without the 
invasion of privacy implied in obtaining other family background informa- 
tion such as parental income, occupation, and education. 

"Family background" is an ambiguous and poorly understood term in 
educational research. It is often mistakenly understood to mean an exclu- 
sively environmental source of variance, but, in fact, it is nearly always some 
composite of between-families environmental differences and genetic differ- 
ences. 

Between- and Within-Family Variance. Variance between families (ignoring 
measurement error) is due to those genetic and environmental influences 
that are common to all siblings within a family, but that differ between 
families. ("Family" in this context refers only to full siblings who are reared 
together.) Variance within families (ignoring measurement error) is due to 
those genetic and environmental influences that cause siblings (reared to- 
gether) to differ from one another. 

Some classes of variables can have both between family and within family 
differences. This is true of all genetic factors that cause variation in the 
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population, except in the case where the siblings are from a monozygotic 
multiple birth, such as identical twins or triplets, and so forth, for which 
there is no within-family genetic variance. Some types of variables, such as 
racial origin, have between-family but no within-family differences. Still other 
types of variables have no within-family variation at one period of life but 
have it at another period; for example, socioeconomic status (SES). Siblings 
reared together during childhood are considered to have the same SES. But 
later, as adults, siblings may differ in SES, in terms of their differing amounts 
of education, occupational levels, and earnings. There are no characteristics 
that differ within families but not between families. Any genetically condi- 
tional variable on which siblings differ will inevitably show differences 
between families in the next generation. This can be stated in general terms 
as the First Law of Differential Psychology: All within-family phenotypic and 
genotypic differences and corrlations also exist as between-family phenotypic 
and genotypic differences and correlations, but the reverse is neither necessarily 
nor always true. 

Sibling Correlation. The correlation between siblings on a given variable 
is entirely attributable to variance between families. The sibling correlation 
is, in fact, the proportion of the total variance which is attributable to variance 
between families. In the analysis of variance, the total variance in the 
population is partitioned into a between-families component aB2 and a within- 
families component ow2. The population intraclass correlation between sib- 
lings, then, is pi = aB2/(aB2 + ow2). The sample intraclass correlation between 
siblings, derived from the between and within mean squares (MSB and 
MSw) of the analysis of variance, is ri = (MSB - MSw)/[MSB + 
(k - 1)MSw], where k is mean of the frequency distribution of the number 
of siblings per family (Haggard, 1958): 

N- k2/N 
F-I 

where N = total number of subjects, 
k = number of siblings in each family, and 
F = number of families. 

The sibling intraclass correlation ri estimates the correlation between 
siblings in general, since, unlike the interclass or Pearsonian r, it does not 
assign siblings to different classes such as x and y. The simple Pearsonian r,y 
which would be obtained by correlating, say, younger siblings (as x) with 
their next older siblings (as y), or lower scoring siblings with their higher 
scoring siblings, or any other classifications of siblings as x andy, will rarely 
be the same as the intraclass rj, which closely approximates the average value 
of all possible Pearson correlations between siblings. 

In genetical research, where the interest is in estimating the proportion of 
the total variance that a given kinship shares in common, the intraclass 
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correlation is the proper measure of relationship. In certain psychometric or 
statistical uses of sibling (or other kinship) data, however, the Pearson r is 
appropriate. This is evident in any use of sibling data that implies a distinct 
classification of the members of each sibling pair, such as younger versus 
older, male versus female, higher versus lower scoring, and so forth. Pearson 
r is obviously called for in the use of siblings as a covariate control in the 
analysis of covariance discussed above, since one member of each sibling 
pair is classed as the covariate in the ANCOVA. (Pearson r is, of course, 
implicit in the usual computational routines for ANCOVA.) 

(2) TESTING THE AGE-STANDARDIZATION OF 
MEASUREMENTS 

Since siblings (except twins) naturally differ in age, all of the uses 
of sibling data described herein require age-standardized measurements. 
Most published standardized tests provide age-standardized scores, which 
can be rigorously tested for adequacy of the age standardization by the 
use of sibling data, provided the sibling sample is sufficiently large 
(say total N > 200) and representative of the population on which the test 
was standardized. If the sibling sample is not representative, this fact will be 
clearly revealed by the analyses described later. If the age standardization is 
shown by the sibling method to be inadequate and one wishes to use the 
sibling data for one of the other purposes described in this article, the 
measurements should be re-standardized, if possible, to remove any artifacts 
due to age differences between siblings. Poorly age-standardized measure- 
ments have the effect of artifactually inflating the correlation between twins 
(who are always the same age) and artifactually attenuating the correlation 
between siblings (who are always of different ages). 

There are two main methods for obtaining age-standardized measure- 
ments: (a) normalized standardization, and (b) non-normalized standardi- 
zation. In either method siblings are not required, but neither are they 
necessarily excluded. 

(a) Normalized Standardization 

This method is advisable only when the total N is quite large. The total 
age range in the sample is divided into as many equal intervals as possible, 
with the limitation that no interval contain fewer than 100 participants. The 
equal age intervals should not be greater than 1 year and need not be less 
than 3 months-at this limit there is more advantage in having larger N's 
within each age interval than in having narrower age intervals. The raw 
scores within each age interval are rank ordered from highest to lowest, and 
the ranks are then converted to percentile ranks. Using the tabled areas 
under the normal curve, the percentile ranks are transformed to z scores, 
which are normalized standardized scores. (The z scale may, of course, be 

156 

This content downloaded from 152.14.136.96 on Sat, 30 Mar 2013 13:20:27 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


SIBLING DATA IN EDUCATIONAL AND PSYCHOLOGICAL RESEARCH 

subjected to any linear transformation to give the scores any mean and 
standard deviation one deems most convenient for one's purpose.) I have 
generally found that for ability and achievement tests, normalized standard- 
ized scores have the most desirable scale properties; for example, they usually 
satisfy independent criteria for determining an equal interval scale. (See 
section 3.) 

(b) Standardized Age-regressed Scores 

With this method one determines the best-fitting regression line (linear or 
nonlinear) of raw test scores on age (in months), using standard methods of 
curve fitting. A trend analysis should be done to determine if the regression 
of raw scores on age is significantly nonlinear. 

If the regression of raw scores on age does not depart significantly from 

linearity, as often happens for ability tests in the age range from about 5 to 
13, one obtains the age-regressed scores Y for each participant from the 
simple regression equation. That is, Y = bxA(A - A) + X, where bxA is the 
coefficient of regression of raw scores on age (in months), A is the mean age 
of the entire sample, and X is the mean test score in the entire sample. (The 
values of Y can be transformed to z scores or any other convenient transfor- 
mation; or they can be converted to percentile ranks and then transformed 
via the tables of the normal curve, to normalized z scores or any desired 
linear transformation of the normalized z scores.) 

If the regression of raw scores on age departs significantly from linearity, 
as revealed by the trend analysis described below, the age-regressed score Y 
for each individual can be obtained from the regression equation employing 
the set of statistically significant regression coefficients yielded by the trend 
analysis. 

The trend analysis referred to above is most easily performed by means of 
a stepwise multiple regression analysis, in which successive powers of age 
(in months) are entered as the independent (predictor) variables and raw 
test score is the dependent variable. Powers of age (i.e., age', age2, age3, etc.) 
are entered stepwise into the mutiple regression analysis until the increment 
in R2 is nonsignificant (at any desired level of confidence a), as determined 
by the usual F test. 

The adequacy of the age standardization of test scores can be most 
rigorously tested by the use of siblings. Ordinarily one can test the adequacy 
of the age standardization by testing the significance of the correlation r (or 
the multiple R, using powers of age as the predictor variables) between age 
and the standardized scores. The correlation should not differ significantly 
from zero if the age standardization is adequate. Standardized scores ob- 
tained on a large sample of siblings varying in age over the age range of the 
original standardization sample provide two independent tests of the ade- 
quacy of the age standardization. The first statistical test is the Pearson 
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correlation (or multiple R, using powers of age) between the mean age of 
sibling pairs and the test score means of sibling pairs (or sets of any number 
of siblings). This is referred to as the between-families correlation rB between 
age and test scores. The second statistical test is the Pearson correlation (or 
the multiple R, using powers of age) between (a) the age difference between 
older (0) and younger (Y) siblings (i.e., age of O minus age of Y), and (b) 
the test score difference between older and younger siblings (i.e., score of O 
minus score of Y). This is refered to as the within-families correlation rw 
between age and test scores. The expected value of these correlations is zero, 
under the hypothesis that the test scores have been adequately age-standard- 
ized. That is to say, properly age-standardized scores should have zero 
correlation with age. If either rB or rw, or both, differ significantly from zero, 
the hypothesis of adequate age standardization can be rejected. The com- 
bined probabilities of rB and rw provide a more powerful test of the 
hypothesis when rB and rw separately have p values greater than a (a is the 
size of the critical region used, or the probability of making a Type I error, 
that is, rejecting the null hypothesis when it is true). If we know that exact 

p values (call them PB and pw) or rB and rw, we can test the significance of 
the combined result using the method suggested by Fisher (1970, pp. 99- 
101); the value -2(1OgepB + logepw) is distributed as chi-square for 4 degrees 
of freedom. 

Correction of BF and WF Correlationsfor Attenuation 

A more stringent test of the hypothesis that the scores are adequately 
standardized for age is achieved if rB and rw can be corrected for attenuation. 
The reliability of age is assumed to be perfect, and the reliability rxx of the 
test scores is estimated in the usual way. The reliability rx of the sibling pair 
means, then, is 

rx = (rxx + ryo)/(l + ryo), (1) 

where ryo is the Pearson r between younger and older siblings. The reliability 
ro-Y of the differences between older and younger siblings is 

ro-r = (rxx - ryo)/(l - ryo). (2) 

Correction for attenuation of rB and rw, then, is rB' = rB/r1/2, and rw' = 
rw/r/2y. 

(3) SIBLING TEST OF INTERVAL SCALE 

It is often important in a psychological or educational study to have some 
independent evidence that the measurements constitute an equal-interval 
scale. For example, in testing the hypothesis that a particular type of 
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instruction should produce a larger gain in achievement scores (as measured 
against an IQ-matched control group) for low IQ than for high IQ pupils, 
we cannot meaningfully interpret the lack or presence of this hypothesized 
interaction between IQ level and the magnitude of the experimental effect 
without some evidence that the dependent variable, achievement, is meas- 
ured on an equal-interval scale. Usually we simply assume that the trait (in 
this case, achievement) is normally distributed in the population, construct 
the test in such a way as to yield a normal distribution of scores (or normalize 
the scores by some suitable transformation), and then conclude that the 
scores constitute an interval scale. 

Sibling data provide an independent test of the hypothesis that the scores 
that we wish to interpret as an interval scale are, in fact, an interval scale. 
The test, in essence, is the correlation rMD between sibling means and sibling 
absolute differences on the measurements in question. 

In a random sample of the general school population, sibling means vary 
over a wide range on intelligence and achievement tests. With respect to the 
hypothesis, a sibling mean indicates the average level of the sibling pair on 
the measurement scale. We wish to know if this average level of the sibling 
pairs is significantly correlated with the absolute difference between the 
siblings. The expected correlation rMD should be zero if the measurements 
(scores) are an equal-interval scale. This is a compelling inference only if 
there is no equally compelling theory that siblings should truly differ more 
in certain parts of the total range of scores than in other parts. Sibling 
differences are theoretically analyzable into three components of variance: 
(a) within-family genetic variance, (b) within-family environmental variance, 
and (c) error variance (i.e., unreliability of measurement). There is nothing 
in genetic theory that would lead to the expectation of a nonzero correlation 
between mean sibling genotypic values (which reflect between-families ge- 
netic variance) on a continuous trait and the differences between siblings' 
genotypic values (which reflect within-families genetic variance), excluding 
cases of major gene defects (e.g., phenylketonuria) and chromosomal 
anomalies (e.g., Down's syndrome). Also, there is no general theoretical 
rationale that would lead to the expectation of a nonzero correlation between 
sibling means and environmental differences among siblings (i.e., within- 
families environmental variance). Finally, we can empirically determine 
whether measurement error is homogeneous throughout the full range of the 
scale of scores. 

The test of the hypothesis of an interval scale proceeds as follows: 
(a) The scale is assumed to be properly age-standardized. The adequacy 

of the age-standardization can be checked by the method described in section 
2. 

(b) The homogeneity of reliability can be checked, using all of the data 
without respect to sibling classification. The test is split into equal halves by 
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some psychometrically sensible method, such as odd versus even-numbered 
items. The Pearson r (or multiple R) between total scores and the absolute 
difference between the two half-scores provides a test of the homogeneity of 
reliability. (This is unfortunately not a powerful test and can often result in 
a Type II error [i.e., accepting the hypothesis p = 0 when p # 0], the risk of 
which can be lessened by setting the significance level for rejecting the null 
hypothesis at p < .10 or even p < .15.) The test is performed by the same 
general method as the test for interval scale described in (c) below, except 
that correction for attenuation is not possible, since one is actually testing 
the hypothesis that the reliability of the absolute difference scores is zero, 
that is, that they are purely random errors which cannot be correlated with 
the true scores. 

(c) The test for interval scale is most rigorous if one uses stepwise multiple 
correlation to detect any nonlinear trend, since the inequalities in score 
intervals may not be a simple linear function of the true scale. To simplify 
exposition I shall use M for the mean of a sibling pair and IDI for the 
absolute difference between siblings. Only two siblings per family should be 
used, preferably those nearest in age. (Obviously, the test scores should not 
determine the selection of siblings.) Obtain two stepwise multiple correlations 
(1 and 2, below) based on the n independent variables which add significant 
stepwise increments to R2. 

Independent Variables Dependent Variable 

(1) M, M2, M3 ...Mn IDI 
(2) IDI, ID)2, ID3 ... IDln M 

The resulting multiple correlation coefficient R, in each case, should be 
corrected for bias, using the well-known "shrinkage" formula: 

R = 1 - (1 - R2)[(N - 1)/(N - n)], (3) 

where N is the number of sibling pairs and n is the number of independent 
variables. Each RC should then be corrected for attenuation, to obtain 
Re = Rc/(rMrlDi)1/2, where rM and riDo are the reliabilities of the sibling means 
and sibling absolute differences, respectively: 

rM = (rxx + ri)/(l + ri) (4) 

and 

riD 
= (rxx - ri)/( - r), (5) 
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where rxx is the test reliability and ri is the intraclass correlation between 
siblings. Finally, the two values of Rc are each tested for significance by 
means of the t test: 

t = RcN/2/(l - R (6) 

where N is the number of sibling pairs. If t does not fall in the critical region 
(i.e., p > a), we conclude that the test scores are an interval scale over the 
range subtended by the total distribution of M. 

This method was applied in a study (Jensen, 1977) of the California Test 
of Mental Maturity IQ scores in large sibling samples of white and black 
school children in rural Georgia who differed by 2o in mean IQ. The test of 
interval scale was applied in each racial sample separately, and in the 
combined samples. In no case could the hypothesis of an equal interval scale 
be rejected. 

(4) BETWEEN- AND WITHIN-FAMILY CORRELATIONS. 

Partitioning correlations between variables into their between-families 
(BF) and within-families (WF) correlations has theoretically important uses 
in differential psychology and psychometrics. It permits a separation of 
between-families social-cultural factors (macroenvironments) and within- 
families (microenvironmental) factors that contribute to the total variance in 
the population. The BF correlation (corrected for attenuation) reflects genetic 
and environmental factors that differ between families but not among siblings 
within families. The WF correlation (corrected for attenuation) reflects 
genetic and environmental factors that differ among siblings. In the absence 
of assortative mating (i.e., correlation between parents), the genetic compo- 
nent of the total variance is evenly divided between BF and WF; that is, half 
of the total genetic variance in the population exists between families and 
half of it exists within families. The increase in genetic variance due to 
assortative mating all goes into the BF variance, whereas the WF variance 
is negligibly affected by assortative mating (see Jensen, 1978). 

Partitioning Sibling Covariance and Correlation 

The total covariance between any two variables X and Y is Exy/N, where 
x and y are deviations from the mean (i.e. x = X - X and y = Y - X) and 
N is the number of paired variables. (Pearson r = Exy/Naoxy.) 

If n pairs of siblings, with the members of each pair designated as a and 
b respectively, are each measured on variables X and Y, the total covariance 
between X and Y can be analyzed into two additive parts: between-families 
(BF) and within-families (WF) covariance. The BF covariance is the mean 
cross-product of the sibling means on x and y: 
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BF cov= - E ( X)(. (7) 

The WF covariance is the mean cross-products of one-half of the sibling 
differences (i.e., the mean of the deviations of each sibling from the family 
mean): 

WF cov- ( Xb . 
(8) n 2 2 

The total covariance between X and Y is: 

1 
Total cov = 2 (XXaya + Xbyb). (9) 

By expanding equations (7) and (8) it can easily be seen that the total 
covariance is equal to the sum of the BF and WF covariances: 

1 
BF cov = (XXaya + Exbyb + EXhYa + EXayb), 

WF cov = 4 (Xaya + xbyb - -ya Y - 
EXb). 

In working with correlations, it is simplest to use the sum of sibling scores 
on X and Y to obtain the BF rxy, and the difference between sibling scores 
to obtain the WF rxy. Obviously the direction of the sibling difference must 
be consistent for X and Y (i.e., Xa - Xb and Ya - Yb); it is most convenient 
to assign older and younger siblings to a and b, respectively. 

The BF and WF correlations should be corrected for attenuation in the 
usual way, using the appropriate reliabilities as given in formulas (1) and 
(2). 

Intrinsic and Extrinsic Correlation 

A correlation between two variables may be intrinsic or extrinsic, a 
distinction that can have considerable theoretical importance. Both intrinsic 
and extrinsic correlations can have either genetic or environmental compo- 
nents, or both. The distinction between intrinsic and extrinsic correlation is 
revealed by BF and WF correlations. The relationships between intrinsic 
and extrinsic correlations and BF and WF correlations are shown in Table 
I. 
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TABLE I 

Relationships Between Intrinsic and Extrinsic Correlations, Genetic (G) and Environmental (E) 
Components, and Between-Families (BF) and Within-Families (WF) Correlations 

Type of Correlation 
All Possible Combinations of BF and 

T 

WF Correlations 
Intrinsic Extrinsic 

(1) BF p > , WF p > O G and/or E 

(2) BF p > O, WF p = 0 G and/or E 

(3) BF p = 0, WF p > 0 Nonexistent Condition 

(4) BF p = 0, WF p = 0 Population Correlation is zero. 

All intrinsic correlations are characterized in general by two properties: 
they cannot be wiped out (or reversed in sign) by means of experimental 
manipulation or by means of genetic selection. 

Four main types of correlation can be referred to as intrinsic: 
(1) Causal-functional. Variables X and Y involve a direct causal relation- 

ship, such that the experimental manipulation of X is accompanied by a 
change in Y. Example: number of learning trials (X) and amount of retention 
(Y). 

(2) Common factor. X and Y are both measures of (or are both correlated 
with) some common factor. Example: strength of left-hand grip (X) and 
strength of right-hand grip (Y); height (X) and weight (Y); or speed of 
learning X and speed of learning Y. 

(3) Part-whole. One variable is some part of the other, or skill X is a subset 
of skill Y. Example: leg length (X) and height (Y); or skill in short division 
(X) and skill in long division (Y). 

(4) Pleiotropy. X and Y are both affected by the same gene(s), even though 
X and Y may be of phenotypically quite distinct characteristics. Variation in 
both traits is linked to a common (genetic) causal factor. A pleiotropic gene 
has two (or more) distinct phenotypic effects. Example: phenylketonuria, a 
single-locus genetic defect, results in mental retardation (X) and lightness of 
skin and hair pigmentation (Y). 

Extrinsic correlations are characterized by the fact that, at least in principle, 
they can be wiped out or even reversed in sign by means of experimental or 
environmental manipulation or by means of genetic selection. 

There are two types of extrinsic correlation: genetic and environmental. 
Extrinsic genetic correlations are of two kinds: (1) nonlinked genetic corre- 
lation and (2) correlation by genetic linkage. 

(1) Nonlinked genetic correlation. Variables X and Y an be correlated in 
the population through common assortment of genes due to cross-assortative 
mating for certain characteristics which have no functional or other intrinsic 
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relationship to one another. Say, for example, there is zero correlation 
between curly hair and height in the population, but in the next generation 
there is a strong tendency for tall men to marry curly-haired women (i.e., 
cross-assortative mating for the two characteristics); then, in the next gen- 
eration there will be a genetic correlation between height and curly hair in 
the population, i.e., persons with curly hair will be somewhat taller, on the 
average, than persons with straight hair. Such cross-assortative mating can 
create a correlation in the population between any genetically conditioned 
traits, even though there may be no intrinsic relationship between the traits. 

Such genetic correlations (unless there is genetic linkage, which is highly 
improbable for continuous or polygenic traits) have the important property 
that they are entirely between-families (BF) correlations and have no within- 
families (WF) component. Even though there is reliable WF variance on 
each trait, the expected value of the WF correlation between the traits is 
zero. Hence, a test of the hypothesis that WF pxy = 0, when the BF p > 0, 
decisively rules out genetic linkage between traits X and Y as well as any 
form of intrinsic correlation between them. If WF pxy = 0, then the total 
population Pxy > 0 (i.e., for all individuals in the population) represents 
entirely extrinsic correlation, due either to (a) genetic correlation (resulting 
from cross-assortative mating for the correlated traits), or to (b) the extrinsic 
component of what I refer to as environmental correlation (see below), or to 
a combination of (a) and (b). 

The fact that a correlation is said to be extrinsic according to this criterion 
does not make it any less real or reduce its predictive validity for individuals 
in the general populations. The distinction between intrinsic and extrinsic 
correlation, however, does imply different theoretical interpretations of the 
correlations so classified. As I have explained elsewhere (Jensen, 1979), 
experimental or so-called process analysis of correlated tests, or of test scores 
and certain physical measurements, can lead to a greater understanding of 
the correlated variables only if there is an intrinsic correlation between them. 
For example, the correlation between height and IQ appears to be entirely 
extrinsic. I and others (e.g., Laycock & Taylor, 1964) have found a significant 
positive BF correlation (ranging from about +0.1 to +0.3) between height 
and IQ, whereas the WF correlation between height and IQ is zero. The fact 
that the correlation between height and IQ is an extrinsic correlation, as 
indicated by these findings, implies that study of the nature of variation in 
height can afford no scientific clues to the nature of individual variation in 
IQ. The discovery of physical correlates of mental traits can possibly lead to 
a greater understanding of the mental traits, provided the correlation is 
intrinsic, that is, a WF correlation that is not due merely to genetic linkage. 
We know, for example, that there is a correlation of about +0.30 between 
IQ and brain size (VanValen, 1974), but we do not know if this is an intrinsic 
correlation. It would seem important to find out. If it is only an extrinsic 
correlation we can forget it, as far as its role in a theory of intelligence is 
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concerned. The same thing can probably be said about the correlations 
between IQ and a number of different blood types (Osborne & Suddick, 
1971). The positive correlation between lightness of skin pigmentation and 
IQ in the American black population (studies reviewed by Jensen, 1973, pp. 
222-224) may or may not be an intrinsic correlation; no one has yet 
determined the WF and BF correlations between IQ and skin color. If the 
WF correlation is zero, it would rule out the hypothesis which explains the 
observed correlation in the black population in terms of adverse effect on IQ 
of social prejudice against darker skin. The counter hypothesis would be 
that the correlation is entirely BF due to cross-assortative mating for skin 
color and IQ within the black population-a finding that might be of 
sociological interest but not of any importance in terms of psychological or 
genetical theory. 

Another example is the negative correlation between IQ and delinquency. 
This turns out to be an intrinsic or WF correlation. Delinquent and nonde- 
linquent siblings of the same sex differ almost as much in IQ as do unrelated 
delinquents and nondelinquents in the general population (Hirschi & Hin- 
delang, 1977). This implies that IQ somehow mediates delinquency-a quite 
different (and much more important) theoretical implication than would be 
the case if only a BF correlation (but not a WF correlation) were found 
between delinquency and IQ. 

(2) Correlation by genetic linkage. Variables X and Y may be correlated 
WF only because they are genetically linked; that is, the genes influencing 
X and Y are located on the same chromosomes in close proximity to one 
another, so that they have a higher probability of remaining together in the 
crossing-over process in gametogenesis (the meiotic formation of the sex 
cells). The two traits, however, may not be any more intrinsically correlated 
than in the case of nonlinked genetic correlation; and as the linkages break 
up in successive generations, the WF correlation (and the BF correlation, 
too) will gradually decrease toward zero. Linkage would account for little, 
if any, of the correlation between continuous or polygenic traits, but would 
have to be considered, for example, in considering correlations between 
particular single-gene blood groups and IQ. The finding of such a genetic 
linkage would not be psychologically informative about the nature of IQ, 
but it would be of considerable importance in the study of the genetic 
inheritance of intelligence. There are methods in quantitative genetics for 
the statistical detection of linkage (e.g., Cavalli-Sforza & Bodmer, 1971, pp. 
870-880). 

Environmental Correlation: Intrinsic and Extrinsic 
This is a class of correlations which may be either intrinsic or extrinsic; 

these two aspects show up in the WF and BF components, respectively, of 
the overall correlation in the population. If two classes of events, X and Y, 
occur together more than chance in the individual's environment, through 
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common interest or exposure, then knowledge of X probabilistically (but not 
causally) implies knowledge of Y. Example: A person who knows a lot 
about, say, baseball is also likely to possess above-average knowledge of 
football, through common interest in sports. An opera lover is likely to have 
more than average knowledge of symphonies. 

Such environmental correlations can exist WF as well as BF. Sex differ- 
ences in tests of various kinds of information are an example. There is a WF 
correlation between knowledge of sewing and cooking, and between knowl- 
edge of sports and auto mechanics, largely because of the different experi- 
ences of males and females. One would expect these WF correlations to be 
higher in families with opposite-sex siblings than in families with same-sex 
siblings. 

Certain kinds of environmental experiences may be much more highly 
associated for all siblings of some families than for all siblings of other 
families, because of differing family interests, life styles, cultures, and so 
forth. Measurements of the knowledge or skills derived from such associated 
experiences will then show a much higher BF correlation than a WF 
correlation. Marked differences between BF and WF correlations, and 
particularly a difference between the pattern of intercorrelations or thefactor 
structure of the BF and WF intercorrelations of a number of variables, 
indicates that at least some of the intercorrelations among the variables are 
either extrinsic environmental correlations, or extrinsic genetic correlations, 
or both. Different social classes or racial groups, for example, might have 
different commonly associated cultural experiences, which generally affect 
all members of a family as well as most families in the particular group. The 
WF and BF correlations between measurements that reflect these experiences 
will therefore be different in different subpopulations. If variance in mental 
test scores were largely the result of differences in social class, cultural 
background, economic privilege, parental education, family values, and the 
like, as is often conjectured, then we should expect most of the significant 
intercorrelations among such tests to be BF rather than WF, and it would 
seem reasonable to expect different patterns (or factor structures) of BF and 
WF intercorrelations among various tests, and in different subpopulations. 

(5) SIBLING TEST OF CULTURE BIAS 

The hypothesis that a test is not culturally biased for two or more 
subpopulations can be rejected if it can be demonstrated, at some acceptable 
level of statistical significance, that any essential psychometric characteristic 
of the test differs between subpopulations. The one characteristic that is 
excluded, of course, is the mean, since tests are intended to discriminate 
among individuals, and as different subpopulations are comprised of indi- 
viduals, there is no reason, in principle, why the mean test scores of the 
subpopulations should not also differ reliably if the subpopulations are not 
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assumed to be perfectly random samples of the total population. Every 
failure to reject the null hypothesis (i.e., that the subpopulations do not differ 
significantly on some essential psychometric characteristic of the test, such 
as reliability, validity, item characteristic curves, factor structures, etc.) 
strengthens the presumption that the test is not culturally biased for the 
subpopulations in question. Sibling data on a battery of tests provide an 
additional means for testing this null hypothesis. 

This use of sibling data is illustrated by measurements obtained on pairs 
of siblings from 1,495 white families and 901 black families in grades 2 to 6 
(ages of about 7 to 12 years) in California schools. In all cases, the pair of 
siblings in each family nearest in age and enrolled in grades 2 to 6 were 
selected for this study. In addition to measurements of height and weight, 
scores on the following tests were obtained: 

Memory: a composite score based on three highly intercorrelated tests of 
rote memory involving immediate recall, delayed recall, and learning 
through repetition. 

Figure Copying: copying ten geometric forms of increasing difficulty 
(complexity). 

Pictorial IQ: Lorge-Thordike Primary Level IQ test, a nonreading test 
employing pictorial materials and orally group-administered. 

Nonverbal IQ: Lorge-Thorndike Nonverbal, a completely nonreading, 
nonverbal test employing pictorial and abstract figural material. 

Verbal IQ: Lorge-Thorndike Verbal, a verbal test consisting of word 
similarities, opposites, verbal analogies, verbal reasoning, and so forth. 

Vocabulary: Word Meaning subtest of the Stanford Achievement Test. 
Reading Comprehension: Paragraph Meaning subtest of the Stanford 

Achievement Test. 
Age Standardization: Raw scores on each of the above tests, as well as the 

height and weight measurements, were age-standardized (i.e., normalized 
standard scores within 6-month intervals) on the data of an entire school 
district with approximately 8,000 pupils, 60 percent whites and 40 percent 
blacks. Age-standardization was done separately for blacks and whites. The 
adequacy of the age-standardization was tested by the sibling method 
described under section 2. The shrunken multiple R between powers of 
sibling age differences and sibling standardized score differences was not 
significantly greater than zero for any of the measurements for either whites 
or blacks. In other words, age variance in scores was effectively removed by 
the standardization procedure. 

Interval Scale. The age-standardized scores on each of the tests was 
checked for interval scale within each racial group by the method described 
in section 3. All of the tests met the criterion of interval scale for both racial 
groups. 

Height and Weight. The BF and WF correlations between height and 
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weight (correlations corrected for attenuation in parentheses), and the sibling 
correlations, rHH' and rww', are shown in Table II. Height and weight are 
obviously intrinsically correlated-an example of correlation through a com- 
mon factor, viz., general body size. 

Height and weight show only two significant (p < .05) WF correlations 
with the seven mental tests for both whites and blacks, while there are 12 
significant BF correlations with the physical measurements, suggesting that 
the physical measurements are not intrinsically correlated with mental 
ability. The average WF and BF correlations between the physical and 
mental measurements are +.02 (ns) and +.10 (p < .01), respectively. 

Factor Analysis of BF and WF Correlation Matrices 

The BF and WF matrices of corrected correlations among the seven tests 
were factor analyzed separately, for whites and blacks. The general factor 
common to all of the tests is represented by the first principal component, 
which was extracted from the BF and WF correlation matrices for whites 
and blacks. 

If the tests' intercorrelations are intrinsic rather than extrinsic, the same 
general factor g should appear in both the BF and WF matrices, which 
would indicate that test score differences between siblings reflect the same 
general factor as test score differences between children from different 
families. And, if the tests are not culturally biased, one should expect to find 
the same g factor in whites and blacks, for both BF and WF correlations. 

Table III shows the loadings on the first principal component extracted 
from the four correlation matrices. It can be seen that the four factors are 
highly similar. The size of the loadings are generally larger for the BF than 
the WF first principal component, which should be expected if there is 
assortative mating for g, since all of the population variance attributable to 
assortative mating is BF variance. Also, there is undoubtedly some BF 
environmental variance, which appears to be similar in nature to WF 
environmental variance, considering the similarity between the BF and WF 
g factors shown in Table III. 

A quantitative index, ranging from -1 to + 1, commonly used to measure 
the degree of similarity between factors extracted from the same set of 

TABLE II 
BF and WF and Sibling Correlations of Height and Weight in White and Black Samples 

Type of Correlation White Black 

Between Family rHw .73 (.75) .79 (.81) 
Within Family rHw .68 (.71) .70 (.74) 
Between Siblings rHH' .42 (.43) .45 (.46) 
Between Siblings rww, .38 (.39) .37 (.38) 

Note. Correlations in parentheses are corrected for attenuation. 
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variables in different samples is the congruence coefficient rc (Cattell, 1978, 
pp. 251-255): 

rc = E bibj/(E bi2Z b2)11/2 (10) 

where bi and bj are the factor loadings on the same tests in groups i and j. 
The congruence coefficients among the four g factors are shown in Table 
IV. They are all very high and do not differ significantly, indicating that this 
battery of tests measures the same g factor both within and between families, 
and in both whites and blacks in this California school population. Thus, 
the intercorrelations among the tests are mainly intrinsic correlations in both 
racial populations, and, so too, the g factor (first principal component) 
common to all of the tests is an intrinsic factor, as would be also individual 
factor scores derived therefrom. Either there are no cultural differences 
between the groups or whatever cultural differences may exist do not 
significantly alter the character of the general factor that is common to these 
diverse tests. 

TABLE III 

Loadings on the First Principal Component (Correctedfor Attenuation) of the Between- and 

Within-Family Correlationsfor Whites and Blacks 

White Black Test 
Between Within Between Within 

Memory .585 .285 .477 .398 
Figure Copying i .492 .350 .645 .316 
Pictorial IQ .950 .789 .847 .945 
Nonverbal IQ .904 .892 .932 .871 
Verbal IQ .952 .981 .958 .924 
Vocabulary .825 .713 .698 .657 
Reading Comprehension .878 .737 .796 .688 

Percent of Variance 66.6 51.9 61.0 52.4 

TABLE IV 

Congruence Coefficients Between First Principal Components of Whites (W) and Blacks (B), 
Between (b) and Within (w) Families 

Principal Component (2) W w-f (3) B b-f (4) B w-f 

(1) White between-families .987 .993 .991 
(2) White within-families .986 .993 
(3) Black between-families .985 
(4) Black within-families 
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