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ABSTRACT: The historical separation of the study of learning and of intelligence is 
seen as an anomaly in the development of scientific psychology. Although leam- 
ing and intelligence can be conceptually distinguished in terms of formal defini- 
tions and measurements, a review of evidence on the relationship between 
individual differences in measures of learning and of intelligence suggests that 
no clear distinction can be made between the cognitive processes that con- 
tribute to individual differences in these two de~nitionally different reaims. 
Problems of measurement and meth~ology in the study of individual differ- 
ences in learning have often contributed to misleading results and conclusions. 
The results of proper analyses are consistent with the conclusion that perfor- 
mance on learning tasks and on conventional tests of intelligence, or IQ, both 
reflect common factors, principally Spearman’s g, or the general factor common 
to all cognitive abilities. There is no evidence of a general factor of learning 
ability independent of g. It is argued that the observed correlations between 
individual differences in learning and in g can best be understood from the 
viewpoint of information processing theory, in particular, in terms of individual 
differences in the speed of operation of the various components of the informa- 
tion processing system. 

It has been observed that some people acquire knowledge and skills 10 or 20 
times faster than others (Payne & Tirre 1984). Certain people can acquire particu- 
lar knowledge and skills that some others cannot acquire at all with any amount 
of training. Such conspicuous individual differences in learning are most com- 
monly thought of as differences in intelligence. Indeed, ability to learn is part of 
many psychologists’ definitions of intelligence, and most educators and the laity 
hardly make any dist~ction between learning and intelligence. 

Therefore it seems paradoxical that the study of learning and the study of 
intelligence have advanced along quite separate paths throughout the history of 
psychology. These began and developed as different fields of investigations, each 
with its own distinctive phenomena, and with different specialized vocabularies, 
different conceptual and theoretical systems, and different methodologies. It 
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seems incredible that such closely related behavioral phenomena could have 
become so sharply divided into separate fields of psychological inquiry. 

This strange division of labor in the history of psychological research is a prime 
example of what Cronbach (1975,1975) has referred to as the “two disciplines of 
scientific psychology.” The two disciplines are experimental psychology and 
differential psychology (i.e., the study of individual and group differences, with 
its closely allied field of psychometrics). The former claimed learning in its 
domain; the latter claimed human variation in mental abilities, particularly in- 
telligence. The research aim of experimental psychology has been to discover 
general laws of behavior, without reference to individual variation, in the tradi- 
tion of the physical sciences. The aim of differential psychology has been to 
classify and quantify variation in human abilities and traits and discover their 
essential nature or “structure” in terms of more basic and elemental sources of 
variance, or factors. 

This dichotomy in research and theory, which set the study of learning and 
intelligence on different paths, has been deplored in many reviews over the past 
25 years (Allison 1960; Cronbach 1957, 1975; Estes 1970, 1974, 1981, 1982; Jensen 
1979). The many pleas for some kind of theoretical unification have far out- 
numbered the actual attempts. The achievement of a unified conceptual frame- 
work remained impossible until experimental psychologists interested in learning 
and differential psychologists interested in intelligence were able to find a com- 
mon ground on which they could pursue their own research interests. 

The common ground, as it turned out, was not research on intelligence per se, 
or on psychometrics, or on learning, or even on individual differences in learning, 
but research on information processing. It was ushered in with developments in 
experimental cognitive psychology, largely within the last two decades. 

Theory and research on information processing concern the testing of hy- 
potheses about how information (i.e., the stimulus inputs that must precede the 
acquisition of knowledge and skills) is apprehended, encoded, stored, organized, 
retrieved, and mentally manipulated to enable a person to perform intellectual 
tasks. 

A methodological necessity of this endeavor has been the revival of mental 
chronometry, which, through the influence of Wundt’s laboratory, had been the 
most prominent line of research in the early history of experimental psychology. 
Mental chronometry in those days was never associated with the study of learn- 
ing. But about the same time (around 1880) that chronometric studies gained 
prominence in Wundt’s laboratory, Sir Francis Galton (1822-1911) introduced 
chronometry into differential psychology, with his attempt to assess intelligence 
by measuring reaction times to visual and auditory signals. Galton believed that 
individual differences in reaction time, sensory acuity, discrimination thresholds, 
and the like, all of which he measured with his rather primitive “brass instru- 
ment” techniques, reflected individual differences in the inherited aspects of the 
general mental ability that natural selection in the course of evolution had made 
the most distinguishing feature of the human species. But the results yielded by 
Galton’s “brass instrument” techniques looked unpromising at the time, and, for 
a number of additional reasons we need not go into here, mental chronometry 
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died out almost completely, to remain dormant for three-quarters of a century, 
until its recent revival as a prominent methodology in experimental cognitive 
psychology. 

Posner (1978) has defined mental chronometry as “the study of the time course 
of information processing in the human nervous system” (7). The study of indi- 
vidual differences in information processing made chronometry an absolute 
necessity because the elemental information processes in which investigators 
wished to measure individual differences could be elicited only by having per- 
sons perform tasks, called elementary cognitive tusks (ECTs), which are so simple, as 
compared to conventional intelligence test items or typical laboratory learning 
tasks, that the only reliable source of individual differences on the ECTs is speed of 
response. In an ECT, it was not a question, as in the usual intelligence test, 
whether the person could or could not give the right answer; it was a question 
only of how fast the person could respond. 

Response speed (or its converse, reaction time) to various ECTs quickly 
became of considerable interest to differential psychologists when it was finally 
established that Galton was right after all: Reaction time, where discrimination or 
choice is involved, is indeed correlated with IQ or other psychometric indices of 
mental ability. Research on the experimental psychology of information process- 
ing and the measurement of individual differences on various ECTs with chrono- 
metric techniques that were related to scores on conventional psychometric tests 
thus provided a more unified conceptual and methodological framework than we 
had heretofore possessed for comprehending the empirical phenomena tradi- 
tionally associated with “learning” and “intelligence.” 

But before examining the empirical relationship between these domains and 
the developing theoretical rapproachement between them, I must first define 
what I mean by each term and note the main semantic blocks to bringing them 
together in a unified framework. 

THE PHENOMENOLOCY OF LEARNING AND INTELLIGENCE 

In terms of its subjective phenomenology, learning seems more real, or more 
directly experiential, than intelligence. A man who grew up in isolation on a 
tropical island, for example, would very likely induce the concept of learning, as a 
result of his subjective experience. He would notice that his performance of 
specific skills, such as bringing down birds by throwing stones, or spearing fish, 
or climbing trees to fetch fruit, or getting from one part of the island to another, 
improved with repetition (practice). He would also notice that the rate of 
improvement was greater when he could perceive the immediate result (reward 
or reinforcement) of each attempt. He would experience that the attainment of 
certain goals would become easier with increasing practice; the required tasks 
would become less difficult, less fatiguing, and less attention demanding (i.e., he 
could also pay attention to other things while performing the task). If he were so 
inclined, he could probably discover most of the basic “laws of learning” just by 
observing his own experiences with practice in a variety of tasks and noting the 
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changes in his performance. By systematic self-observation of his changes in 
performance with practice, he should be able to induce such concepts as gen- 
eralization, discrimination, extinction, transfer of training memory, retroactive 
interference, and forgetting. (In fact, Hermann Ebbinghaus [1850-19091 did just 
that, using himself as his only experimental subject.) 

It seems doubtful, however, that our hypothetical psychologist, alone on his 
island, would ever induce the concept of intelligence, or general mental ability. 
People have no subjective experience of their intelligence. There is nothing an 
isolated individual could observe in his own behavior that would permit him to 
induce the concept of intelligence. He would be aware of various abilities to 
perform particular tasks, and he would notice improvement in performance with 
practice on specific tasks. Also, he would be conscious of his effort. But the notion 
of his possessing some level of general mental ability, or intelligence, that entered 
into the acquisition and performance of nearly all of these diverse skills, would 
never enter his head. The reason, of course, is that the concept of intelligence is 
an inference, an abstraction, induced from the observation of d@rences between 
individuals in a certain class of behavior. 

If our islander were joined by a number of companions, he would probably 
induce the concept of “general mental ability” as readily as he had induced the 
“laws of learning.” He might notice that there was no consistent relationship 
between individuals’ proficiency in a variety of tasks and their sheer physical 
strength or agility or sensory acuity-hence the notion of mental abilities, as con- 
trasted with physical abilities. He would also notice that some individuals 
learned just about every kind of task faster and performed most tasks better than 
did the majority of other individuals-hence the notion of general mental ability. He 
might also notice certain marked exceptions, where a few individuals learned and 
performed a certain class of tasks much better than their overall average level of 
performance on all other tasks-hence the notion of special abilities. 

In brief, the study of learning rests on the analysis of changes in a single individ- 
ual’s behavior in relation to certain external conditions that influence these 
changes. The study of intelligence rests on the analysis of differences between indi- 
viduals in level of performance in a variety of tasks that can be described as 
mental in the sense that individual differences in task proficiency are negligibly 
correlated with individual differences in sensorimotor functions per se. 

DEFINITION OF LEARNING 

The concept of learning is an inference from the observation of behavior. In terms 
of the most general operational definition, we say that learning has occurred 
when we observe a change in the probability or strength of a particular behavior 
in response to a given stimulus, problem, or situation, where the change cannot 
be attributed to other causes such as physical maturation of the nervous system, 
aging, fatigue, illness, brain damage or other physical impairment, drug effects, 
changes in emotional state, or changes in arousal or drive state. 

The behavioral changes from which we infer learning are preceded and fol- 
lowed by changes in the immediate stimuli or external conditions impinging on 
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the organism, which are referred to as the “conditions of learning,” and they 
usually (but not necessarily) involve repetition (or practice) of the particular 
behavior in the presence of these conditions. The complexity of the behavior that 
can be learned varies enormously, from relatively simple responses, such as 
habituation of the orienting reflex, or a conditioned eyeblink or conditioned 
galvanic skin response, all the way up to extremely complex forms of behavior, 
such as mastering calculus or composing a symphony. 

It will be important in later discussion to distinguish between different kinds of 
learning. But a caution is needed here. By “kinds” of learning I do not necessarily 
refer to different forms of learning that correspond to any kind of differences 
intrinsic to the organism, involving different brain mechanisms or neural struc- 
tures. In speaking of different “types” of learning, all we can be sure of at the 
outset are differences in the learning paradigms, that is, the particular experimen- 
tal conditions of learning. There should be no initial imp~cation of organismic 
differences underlying the learning that is observed under these different types 
of conditions. This caveat, of course, in no way rules out the possibility that 
certain types of learning may engage different neural processes than are involved 
in certain other types of learning. But that is a separate question that can be 
answered only through empirical investigation. To avoid confusion, therefore, it 
is best to think about different types of learning in strictly operational terms, as 
referring either to the experimental conditions of learning or to the observable 
characteristics of the particular change in behavior that occurs under the 
specified conditions. 

In discussing the relationship of learning to intelligence, probably the most 
~ndamental dist~ction is between what has been termed stow ~~~i~g and fast 
Zeroing. These terms do not refer to individual differences in speed of learning, 
but to how the particular learning comes about. 

Slow and Fast Learning. Most genuinely new learning is usually slow, with improve- 
ment in performance taking place gradually throughout the prolonged practice. 
The acquisition of motor skills is conspicuously of this nature, but so are many 
cognitive skills. Acquiring proficiency in reading, in writing and in the basic 
“number facts” of simple arithmetic are examples of “slow learning.” In this type 
of learning performance improves with continued practice even long after the 
learner “knows“ the material being practiced. 

“Slow learning” is often preceded by “fast learning.” One category of fast 
learning consists of “getting the idea.” Learning to read music is a typical ex- 
ample. A bright adult can learn all the essential principles in reading music within 
several hours of instruction and study-the learner “‘catches on” or “gets the 
idea” rather quickly. But beyond this initial stage of relatively fast learning it will 
require some years of continual practice to become able to read music as an 
accomplished musician does-extremely quickly, virtually automatically, with 
little conscious mental effort, and with good aural imagery of how it would sound 
when played on an instrument. 

Fast learning is characterized by quickly “catching on,” “getting the idea,” 
“grasping a concept,” or merely rest~cturing knowledge that one already 
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possesses. Learning new names of things for which one already has another 
name (sodium chloride is salt) is usually fast learning. Also, there is insight learning, 
which is a form of fast learning. It cannot really be said that one has learned the 
proof of the Pythagorean theorem, for example, unless one has grasped it 
through insight, that is, the subjectively sudden perception of a distinctive rela- 
tionship between separately perceived elements. Another form of fast learning is 
based on the transfer of prior learned elements to the learning of something new, 
such as learning the formula for the standard deviation after one already knows 
the formula for the variance, or learning factor analysis after one has already 
mastered matrix algebra. Much of the learning that takes place in the course of 
formal education consists of this type of fast learning. 

Rote Learning and Meaningful Learning. These are anchor points on a continuum based on 
the amount of prior learning that the subject brings to bear on a new task. Rather 
widely separated points on this continuum would be, for example, the serial 
learning of a list of Hindi words printed in Devanagari (assuming, of course, that 
the learner is not a Hindu) versus memorizing a sentence composed of the same 
number of words in English. In meaningful learning, the learner already 
possesses overlearned codes for the elements of the task and often also for 
“chunks” of the task elements, that is, prior learned connections between a 
number of the elements of the task. Also the task may be perceived in relation to 
an already familiar context. Older children and adults, already possess many 
prior learned syntactical connections between words as they normally occur in 
sentences, so it is much easier to memorize a meaningful sentence than to memo- 
rize a list of random words. If the sentence is not highly meaningful, that is, if it is 
not understood by us because the words (or their peculiar combination) lack 
appropriate referents to our prior experience and are therefore without context, it 
is much more difficult to memorize. 

When a sentence is fully understood, in the sense that its key elements are 
assimilated with our prior knowledge, it is much easier to remember the essential 
meaning of the sentence than the exact wording of the sentence itself. We may 
forget its exact wording, but can accurately paraphrase its meaning in our own 
words. That is a criterion of comprehension, which is one of the critical differ- 
ences between good and poor readers. 

Another important distinction for understanding the relation of learning to 
intelligence is trial-and-error learning as contrasted with strategic problem solving. 
An example of a strategy for solving a certain class of problems involving logic is 
the use of Venn diagrams for determining the logical validity of syllogisms. An 
example of trial-and-error learning is the acquisition of purely random (but con- 
sistent) associations between, say, the numerals 1 through 9 and the letters u 
through i, when the numbers are presented serially and the learner’s guesses of 
the associated letters are immediately followed by reward or punishment 
(“Right” or ‘Wrong”). In general, trial-and-error learning occurs when either 
(1) the associations to be learned between the elements of the task itself are so 
random as not to allow any benefit to a planned or systematic approach, or 
(2) the learner does not bring enough prior experience to the task to be able to 
adopt an appropriate strategy. 
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In general, the chief characteristic that distinguishes between all the various 
types of learning discussed above is the degree to which the learning of a given 
task benefits from some form of prior learning. This interaction between new 
learning and prior learning creates one of the main problems in interpreting the 
observed correlations between individual differences in learning and psycho- 
metric intelligence. 

level I and Level II Abilities. Twenty years ago I (Jensen 1968) presented evidence that 
two distinct classes of cognitive tasks show an interaction with social class and 
race (i.e., black-white). Individual differences in performance on the two types 
of tasks were attributed to what was termed Level I and Level II abilities. 
Briefly, Level I consisted of the registration and recall of information involving 
little if any transformation of the input; Level II involved transformation and 
mental manipulation of the input. Examples of Level I tasks are forward digit 
span memory and serial and paired-associate rote learning that does not 
depend on mnemonic strategies, Learning the alphabet, or the capitals of the 50 
states, or simple arithmetic “facts“ is also largely Level I. In contrast, Level II 
tasks call for reasoning problem solving, the use of concepts, perceiving 
abstract relationships, generalization, and the like. Standard IQ tests for the 
most part typify Level II. 

It was discovered that children from high and low socioeconomic status (SES), 
and especially black and white children, on average, differ very much less in their 
performance on Level I tasks than on Level II tasks. Only a very moderate 
correlation of 0.3 to 0.4 was found between Levels I and II, and the correlation was 
lower among blacks. These findings seemed to suggest that instruction might be 
able to capitalize on Level I ability to improve the scholastic learning of children 
who have good Level I ability but are relatively low in Level II, or IQ. 

V~tually the entire literature on Level I-Level II has been thoroughly reviewed 
by Vernon (1981, 1987bf. As I have fully explained elsewhere (Jensen 1987g), I 
have rather drastically revised my own view of the Level I-Level II formulation. 
In brief, it is theoretically more parsimonious to subsume it under what I have 
termed “Spearman’s hypothesis” (Jensen 198513, 19870. This is now the well- 
substantiated empirical fact that the variable size of the average white-black 
difference on various mental tests is directly reiated to the degree of the tests’ 
loadings on g, the general factor common to all cognitive tasks. Level I and Level 
II simply represent two classes of tasks that are widely separated on the whole 
continuum of g loadings. 

THE ME~URE~ENT OF LEARNING 

Yet another problematic factor in this connection is the actual measurement of 
learning. The quantification of learning in individuals is not as highly developed 
or as standardized in procedures as the technique of psychometric testing. 

There is no single measure of an individual’s performance in a learning task 
that is adequate to characterize the individual’s learning. Four main parameters 
must be considered: 
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1. initial level of performance on the task prior to the learning trials. In “real life“ 
learning situations, such as schooling, it is rare that all persons begin a learning 
task with equal levels of performance; they are already at different points on the 
learning curve when training begins. Therefore it is essential that level of perfor- 
mance on the task be assessed before or during the first learning trial. Only with 
the specially contrived and usually artificial tasks used in laboratory learning 
experiments can we reasonably expect that all subjects begin learning at virtually 
the zero point of the learning curve. At this point, of course, there is no true 
variance (i.e., individual differences) in performance, only error variance; hence 
true variance necessarily increases with practice. If the task can be mastered with 
sufficient practice by all subjects, then, of course, true variance will gradually 
reduce to zero in the course of learning. Because true variance is essential for 
correlation between variables, a reliable and valid measure of learning must 
consist of something other than simply the difference between the initial and 
final levels of performance. 

2. Final level OY asymptote of performance at the end of practice. This can be a reliable 
measure of individual differences only if practice is not carried on to a level of 
mastery of the task for any subject in the study, or if the nature of the task is such 
that there is effectively no intrinsic ceiling to proficiency on the task. There is 
probably no ceiling for skill in chess, for example. 

3. Rate of change between the initial trial and final trial. Because a learning trial is 
an arbitrary unit, it is preferable to convert trials to an appropriate unit of time 
measurement. (Time has the advantage of a physical measurement with units 
constituting a ratio scale.) This can be easily done because learning trials, 
whether experimenter-paced or subject-paced, occur in time, and we obtain 
some measure of the level of the subject’s performance at each point in time. 
Hence rate of learning can be expressed as amount learned per unit of time. 

However, this type of measure of rate of change is not without serious prob- 
lems when there are true individual differences in the level of task performance at 
the beginning of training or practice. Subjects who excel at the beginning or 
during the first trial of learning often appear as slow learners in terms of gain 
scores, because they have less far to go to reach peak performance on the task to 
be learned. Therefore they are necessarily constrained to show a low rate of 
improvement with practice. A person who cannot type at all, for example, can 
show a much greater gain in typing proficiency after three hours of practice than 
can a person who already has some skill in typing. 

There is also the problem that gain scores (or change scores) are notoriously 
unreliable. This is so because the reliability of a difference between, say, variables 
x and y is a function not only of the separate reliabilities of x and y, but of the 
correlation between x and y. The higher the correlation between x and y (e.g., 
levels of performance in the initial and final trials of learning), the lower is the 
reliability of the difference between them. This mathematical necessity plays 
havoc with attempts to correlate gain scores with other variables. These psycho- 
metric and statistical problems of measuring change have been well explicated 
elsewhere (Cronbach & Furby 1970; Cronbach & Snow 1977). 
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4. Oscillation in performance level throughout the course of pracfice. Learning curves 
show a directionally consistent and smooth change in level of performance with 
practice only when they are group curves based on the average of a number of 
individual learning curves. Changes in an individual’s performance throughout 
practice are comparatively erratic, yielding a rather saw-toothed record of gains 
and losses from trial to trial, although a smoothed curve can usually be fitted to 
these erratic data points to reveal an overall gradual improvement in perfor- 
mance as a unction of amount of practice. Osci~~~on is the up-and-dog varia- 
tion in performance around the smoothed curve. There are reliable individual 
differences in the degree of oscillation, which are related to other parameters of 
the learning curve and possibly to intelligence, although research on individual 
differences in oscillation is too scanty for any worthy conclusions, It is not yet 
certain whether individual differences in oscillation involve any reliable variance 
that is independent of individual differences in other parameters of the learning 
curve. The phenomenon of oscillation may well reflect what cognitive psycholo- 
gists now refer to as “attentional resources.“ It seems as if the nervous system 
varies from moment to moment in its capacity to respond to external events, and 
this inherent in~aindividual variability may be a ~ndamental phenomenon 
related to individual differences in learning and intelligence. It is known, for 
example, that trial-to-trial intraindividual variability in reaction time (RT) is at 
least as highly correlated with IQ as is RT itself (Jensen 1982a, 1987~). 

Developmental Factors. When we study forms of learning in which instruction and 
practice continue over an extended period, such as a school semester, it is impor- 
tant to avoid confusing learning with maturation, or the spontaneous develop- 
ment of abilities in children as a function of chronological age. In order to assess 
the extent of maturational effects on task performance in studies of this type, one 
needs a longitudinal study in which a noninstructed control group is matched 
with the instructed experimental group on age, gender, and IQ. Some tasks that 
are exceedingly difficult and require training and prolonged practice for a child to 
learn to do at an early age become surprisingly easy if they are postponed to a 
slightly older age. Children who have great difficulty learning to copy the shape 
of a diamond at age 6, for example, usually find this an easy task by age 7 or 8. 

The effects of maturational readiness were seen most dramatically in the 
famous case of Isabelle, who, from birth to age 6.5, was reared in a semidarkened 
attic by her deaf-mute mother, without any other social contacts (Davis 1947). 
When she was finally discovered by the authorities (age 6.51, she was incapable of 
speech, acted much like an infant, and had a Stanford-Binet mental age of 1 year 7 
months. Once she was placed in a normal social environment, however, her rate 
of learning was far in excess of that of the average child of the same mental age. 
She quickly learned to talk and acquired vocabulary with phenomenal speed, in 
fact, at about the rate that would be expected for a child with an IQ of 300! But 
this incredible rate of learning lasted only until her mental age caught up with 
her chronological age, or maturational level, at about age 8. Within two years she 
had advanced from a mental age of 1 year 7 months to a mental age and level of 
scholastic performance on par with her 8-year-old classmates. Obviously, a great 
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amount of learning had occurred during those first two years following Isabelle’s 
rescue from the attic. But the rate of knowledge acquisition was highly con- 
founded with Isabelle’s stage of maturation, or “readiness” (to use an old- 
fashioned term). 

Similarly, normal children, all of exactly the same chronological age, reared 
under normal conditions, also differ from one another in “readiness” for various 
kinds of learning. These differences are related to differences in intelligence as 
indexed by conventional IQ tests. 

DEFINITION OF INTELLIGENCE 

intelligence has never had, and most probably never will have, a generally agreed 
on definition among psychologists (Sternberg & Detterman 1986). It can be 
argued that intelligmce is not a scientifically useful concept. (The long history of 
this concept has been detailed elsewhere [Jensen 1987dl.) Because it lacks any 
operational meaning that is not just the arbitrary choice of any given psycholo- 
gist, I have urged that the term intelligence be abandoned in all future scientific 
discussions of human abilities (Jensen 1987a). Intelligence will of course continue in 
popular parlance to mean whatever the speaker may want it to mean. I do not 
propose a new definition because whatever scientifically worthy construct we 
may refer to as “intelligence” will be fraught with all the scientifically unmanage- 
able connotations that this word has accrued since its origin in ancient Greece. 
Also, to substitute a new word for intelligence would only be a circular futility. 
Whatever “intelligence” or any of its synonyms may mean to psychologists or to 
lay persons, one thing seems certain: it does not represent any operationally 
knowable phenomenon and therefore is not amenable to scientific study. So 
there is absolutely no need for another definition of intelligence. We should talk 
about something else-something that meets the requirement of being the kind 
of natural phenomenon that is amenable to investigation by empirical science. 

Abilities. The term ability, as used here, does not refer to a potential, a capacity, an 
enduring characteristic of an individual, or a latent trait or factor inferred from 
behavior. It refers only to manifest behavior itself. 

To be termed an ability, the behavior must meet two main criteria: (1) It must be 
an observable response to a task, a problem, or challenge offered by the environ- 
ment; and (2) the adequacy of “goodness” of the response must be of such a 
nature as to be classified or graded in terms of an objective standard. 

Abilities are said to be mental, as contrasted with physical, when individual 
differences in performance on the tasks in which the ability is observed are 
negligibly correlated with individual differences in independent measurements 
of sheer sensory acuity or muscular strength or dexterity. 

A single item on a typical IQ test, aptitude test, or achievement test is an 
example of a task. An individual’s response to the item, when scored, indicates 
the degree of his or her abilify to perform that particular tusk. To use the term ability 
in any other sense than as an observable response to a particular task is to turn it 
from a datum into an abstraction, an inference, a “factor of the mind,” or a hypo- 
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thetical construct. It is best not to risk confusing raw observations with 
inferences about them. So “abilities” are the raw observations as here defined. 

To speak of abilities with such a high degree of specificity may seem so 
molecular and chaotic as almost to preclude our understanding them in any 
systematic way. Fortunately, there is one fact of nature that makes it possible to 
have a science of human abilities. That is the fact that the correlations among 
virtually all mental abilities are nonzero positive in any large, unrestricted sample 
of the general population. Although the positive correlations among mental 
abilities range very widely, reliable and nonartifactual negative correlations 
between abilities have not been empirically demonstrated. L.L. Turstone (1974: 
341-343) termed this phenomenon positive manifold, when it is seen in a matrix of 
all positive correlations. 

Factor Analysis. The existence of a positive manifold has the important implication 
that some large part of the total variance in a number of different abilities can be 
accounted for mathematically in terms of some much smaller number of 
underlying sources of variance (termed fuctors) than the total number of abilities. 
Hence one can speak of common factor variance that different tasks, test items, or 
whole tests may have in common. The reliable variance in total scores on any 
mental test composed of a number of items consists of the total common factor 
variance among all the items, or twice the sum of all the item covariances. 

A variety of mathematical techniques known as factor analysis makes it possible 
to decompose the total common factor variance on a number of diverse tests into 
some smaller number of factors, either correlated (oblique) factors or uncorrelated 
(orthogonal) factors, depending on the method of factor analysis. 

It is theoretically preferable to perform a factor analysis in such a way as to 
make all significantly nonzero factor loadings positive on every factor because it 
makes little sense psychologically to speak of a negative ability. Also, it is an 
artificial mathematical constraint to make all of the primary factors in a factor 
analysis orthogonal (i.e., uncorrelated) to one another. These first-order, or 
primary, factors can be correlated with one another, and these correlations, in 
turn, can themselves be factor analyzed to yield a smaller number of higher-order 
(in this case, second-order) factors. These factors in turn may be correlated and 
factor analyzed to yield (in this case) third-order factors. This procedure of 
extracting uncorrelated factors at different levels that represent increasingly 
more general sources of variance is termed hierarchical factor analysis. When 
applied to a large collection of diverse mental tests, it affords the clearest, most 
easily interpretable, and theoretically most compelling picture of what psycho- 
metricians refer to as the structure of mental abilities. Procedures for doing this 
type of factor analysis have been explicated by Schmid and Leiman (1957) and by 
Wherry (1959). 

The well-established primary (or first-order) factors are described by such 
terms as word fluency, verbal comprehension, reasoning, numerical operations, spatial 
visualization, memory, and perceptual speed. The best established second-order 
factors are variously named crystallized and fluid ability (Cattell 1971), or v:ed 
(verbal-educational) and k:m (spatial-mechanical) Vernon 1950). The single 
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highest-order factor in a hierarchical analysis of any large and varied selection of 
mental ability tests is conventionally labeled g (for general factor), the symbol 
coined by Charles Spearman (19271, the inventor of factor analysis and discoverer 
of 8. 

Psychometricg. The g factor derived from psychometric tests differs from all other 
factors in that it cannot be described at all in terms of the information content or 
other surface characteristics of the tests in which it is loaded. It is so general that 
it cannot be described at the level of tasks or tests or at the level of behavior. 
Factor analysis permits us to identify the tests that are the most and the least 
loaded with g, but it does not tell us what g is. One should not mistake the mere 
descriptions of tests that are found to be highly g loaded as a definition of g. 

The belief that individual differences in g reflect nothing other than differences 
in knowledge, or what individuals have previously learned, is clearly disproved 
by the fact that some tasks that involve no prior learning or knowledge content 
also show some g loading. 

Distinctions such as “academic intelligence” as contrasted with “practical in- 
telligence” or “everyday intelligence” do not necessarily reflect different psycho- 
logical processes or constructs, but simply refer to various criterion tasks that 
may differ in their g loadings as well as in certain group factors. It happens that 
most “academic” tasks are more highly g loaded than most “everyday” tasks. But, 
in general, novel and complex tasks of any kind are more highly g loaded than 
routine or simple tasks. 

The well-established high heritability of g (Plomin 1988) suggests that its 
explanation will have to be understood ultimately in neurophysiological terms. 
But whatever the essential nature of g is finally discovered to be, there is pres- 
ently little argument that it is a most important factor in individual variation in 
human mental abilities (Gustafsson 1988; Jensen 1987b). It is by far the major 
component of the validity of tests for predicting scholastic performance and 
occupational level, and it is correlated with many other personally, socially, and 
economically important variables (Gottfredson 1986; Jensen 1984; Thorndike 
1985, 1986). 

I have argued extensively (Jensen 1986,1987b, e) that a hierarchical g is highly 
similar when extracted from different collections of mental tests, provided only 
that the tests are numerous and varied in form and content (also see Thorndike 
119871). 

Most important, in the same articles, I have shown that g is not merely an 
artifact of the method of constructing psychometric tests, or of the mathematical 
manipulations of factor analysis, as some critics have claimed, but exists as an 
objectively real phenomenon independently of psychometrics and factor analysis. 
For example, the degree to which various psychometric tests are g loaded is highly 
related to their degree of correlation with numerous other variables that have no 
connection with psychometrics or factor analysis, such as the heritability of 
individual differences in test scores, the spouse correlations and various genetic 
kinship correlations, the effects of inbreeding (and its counterpart, heterosis) on 
test performance, reaction time to visual stimuli, inspection time (i.e., the speed 
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of visual or auditory discrimination), and certain features of the brain’s evoked 
electrical potentials. Also, the highly variable magnitude of the mean difference 
between representative samples of the black and white populations on various 
mental tests is found to be directly related to the tests’g loadings (Jensen 1985a, b, 
1987f; Naglieri & Jensen 1987). 

Measurement of g in Individuals. Estimates of g in individuals are best obtained by means 
of factor scores. An individual’s g factor score is a composite score consisting of 
the weighted average of the individual’s standardized scores on all of the various 
tests that had entered into the factor analysis, each weighted by its g loading. 
Good approximations to g factor scores can be obtained by averaging the unit- 
weighted standard scores on three or four tests that are already well established 
as being highly g-loaded. Even the score on a single test, provided the test has a 
high g loading that approaches its true-score variance, or reliability, can serve as 
an approximation to g. 

It so happens that the total score, or IQ, on most of the well-known stan- 
dardized tests of intelligence is invariably found to be among the most highly g 
loaded in factor analyses of any fairly large collection of diverse mental tests. This 
is fortunate from the standpoint of the present review because IQ tests have been 
the most frequently used in studies of the relationship between learning and 
intelligence, or IQ. It is essentially the relationship of learning to g that has been 
observed. IQ in these studies is best viewed from a theoretical standpoint as a 
stand-in for g. 

It should be clearly realized, however, that g itself is not a product of the IQ 
tests. We can measure g without using IQ tests at all, by means of techniques that 
scarcely resemble IQ tests, such as inspection time, reaction time, evoked poten- 
tials, and other laboratory techniques. The high g loadings of conventional IQ 
tests in factor analyses simply fall out as a fact of nature; the g is not created by 
the IQ tests. Because of the central importance of g in individual differences in 
performance on every kind of task requiring mental ability, especially in tasks 
involving novelty and increasing complexity, as in scholastic learning, IQ tests, 
which were originally devised to assess scholastic aptitude, have been shaped by 
the nature of g, usually unknowingly, but occasionally by intention. 

CORRELATIONS BETWEEN LEARNING AND IQ (ORg) 

The relationship between learning and g can be discussed on two levels: (1) In 
terms of the empirically observed correlations between measures of learning and 
measures of g, and (2) in terms of a theoretical system that comprehends the 
observed empirical phenomena of individual differences in both realms, learning 
and g, within a common conceptual framework. 

Simple correlational studies of the relationship between learning and IQ if 
their results are taken at face value, have produced a rather inconsistent picture 
that contributes little to our understanding. Learning tasks and subject popula- 
tions have both been extremely diverse in these studies, and the obtained corre- 
lations between learning measures and IQ vary over an extremely wide range, 
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although the vast majority are on the positive side of zero when the learning 
parameters are measured in such a way that higher scores represent superior 
performance. 

However, a detailed review or a meta-analysis of all the correlational studies 
ever reported in the literature would have almost no scientific value because the 
precise magnitudes of all the observed correlations do not represent estimations 
of a single true value, as do, for example, various estimates of the speed of light. 
The correlations are so complexly determined by so many conditions, many of 
them not explicit in the particular studies or often not even known for sure to 
anyone, that any particular correlation coefficient, or even the mean of all of 
them, would scarcely be meaningful. There are already so many excellent 
detailed reviews of this literature that it would be otiose to review it again here; 
readers are referred elsewhere for more detailed discussion of this material (Estes 
1970,1974,1981,1982; Gagne 1967; Zeaman & House 1967). 

A few empirical generalizations from all the studies are essential at this point, 
however. Above all, there can be little question of a positive correlation between 
learning and IQ when learning is measured as absolute level of performance after 
a given amount of time (or number of trials) spent in practice of the task to be 
learned, or the speed with which a given level of performance is attained through 
practice (e.g., Dickenson 1941; Garrison 1928; Peterson 1920; Pyle 1919). 

This generalization may seem to be contradicted by the conclusion that is often 
drawn from a highly influential series of studies by Woodrow (1938a, b, c, 1939a, 
b, c, 1940, 1946). The Woodrow studies, unfortunately, created a misleading 
impression that has dominated many discussions of learning and IQ for at least 
two decades. Woodrow claimed that intelligence is not the same as the ability to 
learn. He based this claim on the small, often nonsignificant, and at times even 
negative, correlations he found between IQ and a variety of simple laboratory- 
type learning tasks. What is essential to note, however, is that Woodrow opera- 
tionally defined learning in terms of gain scores, that is, the difference between 
performance in early and late trials, and in the learning tasks he used there were 
usually significant individual differences in task performance in the very early 
trials. Hence Woodrow’s gain measures were not base-free and therefore manif- 
ested all the statistically intractable problems of change scores (or difference 
scores) that necessarily arise whenever the two points of measurement are 
correlated (Cronbach & Furby 1970). By using gain scores as the measure of 
learning on learning tasks in which there were initial individual differences, 
Woodrow, in effect, unwittingly partialed out much of the variance in the per- 
formance of any given task that it has in common with other learning tasks and 
with IQ. In other words, he largely partialed out g. This has led to the common 
but false conclusion that individual differences in learning have little, if any, 
connection with individual differences in g. 

A number of studies (Allison 1960; Duncanson 1964; Edgerton & Valentine 
1935; Per1 1934; Stake 1961) indicate that when individual measures of parameters 
such as learning rate, overall performance level, and asymptotic level are 
obtained from a wide variety of learning tasks and are factor analyzed, there is 
found a modest general factor along with a number of smaller group factors. The 
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general factor of a battery of learning tasks is almost invariably smaller (i.e., it 
accounts for less of the total variance) than is the general factor typically found in 
a battery of psychometric tests. There are two main reasons for this: (1) learning 
measures are generally less reliable or less temporally stable than scores on 
psychometric tests, and (2) more important, the simple learning tasks typically 
used in the reviewed studies have much more specificity (i.e., variance not shared 
with other tasks) than do psychometric tests composed of a large number of 
items. Single learning tasks are much like single test items in their degree of 
specificity. The usual psychometric test, however, is composed of a large number 
of items, so the specificity of the single items is, in effect, averaged out in the total 
score, leaving a substantial source of variance in the total scores that is common 
to all the items. For example, if we factor analyze conventional IQ tests at the 
item level, the g loadings of the single items are even smaller than the loadings of 
any particular parameter of single learning tasks on the general factor extracted 
from a variety of learning tasks (e.g., McNemar 1942). 

The most important finding, from my perspective, is that when a number of 
learning tasks and a number of psychometric tests of abilities are factor analyzed 
together, they all share a large common factor which is statistically indis- 
tinguishable from psychometric g (Allison 1960; Garrett, Bryan, & Per1 1935). 
Factor scores derived from the general factor in each domain are about as highly 
correlated as reliability permits. Virtually all recent reviewers of the evidence in 
this field have reached the same conclusion, that there exists no general factor of 
learning ability independently of what we have here termed psychometric g 
(Ackerman 1986, 1987; Estes 1982; Kyllonen 1986). Whatever general factor is 
found among the parameters of the learning curves derived from a number of 
diverse learning tasks is essentially the same general factor, g, that is found 
among any large number of diverse tests of mental abilities. 

It is to be expected, therefore, that the g loadings of various types of learning 
tasks, and consequently their degree of correlation with IQ will follow the same 
pattern seen with psychometric tests. As Spearman (1927) had originally dis- 
covered, those tests are more highly g loaded that require the “eduction of rela- 
tions and correlates” (in short, reasoning) and involve some degree of abstrac- 
tion. The same is also true for various learning tasks. Concept learning, for 
example, is more g loaded (and more highly correlated with IQ) than are rote 
learning and the acquisition of perceptual-motor skills (Ackerman 1987). 

But there is probably no point on the continuum of complexity and abstract- 
ness of tasks at which g is completely absent. For example, on a simple trial-and- 
error selective learning task, with consistent reinforcement of correct responses, 
in which all learners began without any knowledge of the six stimulus-response 
connections to be learned and in which the particular S-R associations to be 
acquired were strictly random, thereby ruling out the efficacy of logical strategies 
or any kind of reasoning, groups of mildly retarded, average, and gifted junior 
high school pupils all showed clearly different mean learning curves over the 
course of 200 trials; the total number of correct responses is positively correlated 
with IQ both between and within groups (Jensen 1963). Also, on serial and 
paried-associate verbal rote learning tasks, children of average intelligence (mean 
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IQ 105) showed significantly faster learning than retarded (mean IQ 58) young 
adults who were matched with the children on Stanford-Binet mental age 
(Jensen 1965). 

Probably the simplest form of learning is habituation. It is usually ranked even 
below classical conditioning in the hierarchy of cognitive complexity, and some 
experts do not even include habituation in the category of learning. Habituation 
is the weakening of a response following repeated stimulation not followed by 
reinforcement. It is observed even in such neurologically simple species as flat- 
worms and protozoans. Yet it has been shown in young adult persons in the 
upper half of the IQ distribution that individual differences in the habituation of 
the amplitude of the brain’s electrochemical reaction (i.e., the evoked potential) to 
a repeated auditory stimulus (“click”) is correlated (about +.50) with Full Scale IQ 
on the Wechsler Adult Intelligence Scale (Schafer 1985). Even more interesting is 
the fact that the correlation is entirely attributable to the g factor of the Wechsler 
scales; none of the subtests shows an iota of correlation with habituation of the 
evoked potential when g has been partialed out. Also, the relative magnitude of 
the correlations of the 11 WAIS subtests with the measure of habituation is 
correlated 80 with the subtests’g loadings. Strictly behavioral (as contrasted with 
electrophysiological) measures of habituation have not yet been studied in rela- 
tion to g. It would be surprising, however, if they approached anything like the 
degree of correlation for the habituation of the evoked potential. 

In reviewing the then entire literature on the relation of learning to IQ I 
(Jensen 1979) arrived at a number of empirical generalizations regarding the 
conditions that seem most clearly related to the magnitude of the learning-IQ 
correlations, or the degree to which various learning tasks are g loaded. To sum- 
marize: Learning is more highly g loaded when: 

1. 
2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

10. 

learning is intentional and calls forth conscious mental effort; 
the learning or practice trials are paced in such a way as to allow the 
subject time to think; 
the material to be learned is hierarchical in the sense that the learning of 
later elements depends on mastery of earlier elements; 
the material to be learned is meuningful in the sense of being related to 
other knowledge or experience already possessed by the learner; 
the learning task permits transfer-from somewhat different but related past 
learning; 
the learning is insightful, that is, it involves “catching on” or “getting 
the idea”; 
the material to be learned is of moderate difficulty and complexity, in the sense 
of the number of elements that must be integrated simultaneously for the 
learning to progress; 
the amount of time for learning a given amount of material to a specified 
criterion of mastery is fixed for all students; 
the learning material is positively age-related, that is, some kinds of material 
are more readily learned (hence the concept of “readiness”) by older than 
by younger children; and 
performance gains are measured at an early stage of learning something 
“new” than at a late stage of practice on the same task. 
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Continued practice, or overlearning on a given task leads to some degree of 
u~~u~a~~o~ of performance, and as performance becomes more automatized it 
also becomes less g loaded. Individual differences in the speed with which per- 
formance becomes automatized during the course of practice may well be corre- 
lated with g, but the research on this point is yet insufficient to warrant a strong 
conclusion. 

It is especially noteworthy that all these conditions that positively influence 
the correlation between learning and IQ are highly characteristic of school learn- 
ing. Thus the common impression of teachers that IQ is indicative of learning 
aptitude is quite understandable. Low IQ children are indeed “slow learners” in 
school compared with high IQ children, not because the IQ test measures what is 
taught in school, but because it measures mostly g, individual differences in 
which are reflected to some degree in every kind of cognitive performance, 
including school learning. 

THEORETICAL ADVANCES ON 

THE RELATION BETWEEN LEARNING AND g 

The conceptual bridge between ~dividual differences in learning and g is time. 
Specifically, it is the amount of time required for information processing. In recent 
years, both learning and abilities have been viewed theoretically in the context of 
an information processing system (e.g., Ackerman 1986, 1987; Kyllonen 1986; 
Thorndike 1984). Each of the components or processes involved in this system 
operates in time, and there are large and reliable individual differences in the 
time required for the various processes. 

Individual differences in the time taken by certain elemental processes can be 
studied by means of various eIeme&ry cognitive tusks (ECTs), which are generally 
so simple that reliable individual differences can be obtained only chrono- 
metrically, in terms of the subject’s reaction times, or response latencies (Jensen 
1985~). Because these time intervals are extremely short, often less than one 
second, they are typically measured in milliseconds. As mentioned previously, 
these time measures have been shown to be correlated (negatively) with scores 
on conventional psychometric tests and with factors derived from them, such as 
g, and verbal and spatial factors, depending on the information content of the 
ECTs (Brebner & Nettelbeck 1986; Hunt 1976; Jensen 1982a, b; Levine, Preddy, & 
Thomdike 1987; Pellegrino & Kail1982; Vernon 1987a). 

How does it come about that there is a negative correlation between the 
reaction time to an ECT and scores on a nonspeeded psychometric test, in which 
the subject’s response to each test item is scored as “right” or “wrong”? Leaving 
aside the question of the basic cause of individual differences in speed of informa- 
tion processing (a question that will have to await being answered in terms of 
neurophysiology), the answer is suggested by appeal to several well-established 
findings of experimental cognitive psychology. 

First, the conscious brain acts as a one-channel or limifed-capacify information 
processing system, which can deal simultaneously with only a very limited 
amount of information. The limited capacity also restricts the number of opera- 
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ations that can be performed simultaneously on the information that enters the 
system from external stimuli or from retrieval of information stored in short-term 
or long-term memory (STM or LTM). Quickness of mental operations is advan- 
tageous because more operations per unit of time can be executed without over- 
loading the system. 

Second, there is rapid forgetting of stimulus traces in the sensory buffers and of 
information in STM, so there is an advantage to speediness of any operations that 
must be executed on the information while it is still available. 

Third, to compensate for limited capacity and rapid forgetting of incoming 
information, the individual resorts to rehearsal and storage of information into LTM, 
which has relatively unlimited capacity. But the process of storing information in 
LTM itself uses up channel space, so there is a “trade-off” between the storage 
and the processing of incoming information. The more complex the information 
and the operations required on it, the more time that is necessary, and conse- 
quently the greater the advantage of speediness in all the elemental processes 
involved. Loss of information to overload interference and forgetting of traces 
that were inadequately encoded or rehearsed for storage or retrieval from LTM 
results in “breakdown” and failure to grasp the essential relationships between 
the elements of a complex problem needed for its solution. Speediness of infor- 
mation processing should therefore be increasingly related to success in dealing 
with cognitive tasks to the extent that their information load strains the individ- 
ual’s limited channel capacity. The most discriminating test items would be those 
that “threaten” the information processing system at the threshold of “break- 
down.” In a series of items of graded complexity, this “breakdown” would occur 
at different points for various individuals. Hence measurements of individual 
differences in the speed of the elemental components of information processing 
could be obtained on tasks that are so simple as to rule out “breakdown” failure, 
as in the various ECTs on which response latencies are found to be correlated 
with scores on complex psychometric tests, such as the Wechsler Scales and the 
Raven Matrices. In general, a faster rate of information processing means that 
more information is processed per unit of time, and because all knowledge and 
skill acquisition involve information processing, those who process information 
faster acquire more knowledge and skill from a given amount of experience. 
Although individual differences in the exceedingly brief reaction times to ele- 
mentary cognitive tasks are very slight, often amounting to no more than a few 
milliseconds, they become of considerable consequence when multiplied over 
extended periods of time. The seemingly slight but real differences in reaction 
times between average and gifted children are, by about age 12, correlated with 
quite extreme differences in amounts of general knowledge, vocabulary, and 
academic skills (Cohn, Carlson, & Jensen 1985). 

All the same principles also apply to learning the very same cognitive pro- 
cesses are involved. Hence it is not surprising to find, as Gettinger (1984) reports 
in her important review, that individual differences in the amount of time needed 
for learning is very substantially correlated with IQ, and this is especially true in 
learning scholastic subjects, probably because of their greater complexity than 
the learning tasks typically used in experimental studies of learning. 
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FIGURE 1 
Hypothetical schema of information processing components, 

with arrows showing direction of information flow. 
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The main information processing components most frequently mentioned in 
the recent literature are shown schematically in Figure 1. Each of the components 
(represented in rectangles) requires a certain amount of time. For example, just 
the first two, which can be measured by simple reaction time to an external 
stimulus, require about 200 to 300 milliseconds for young adults. The time 
required just to attain conscious awareness of an external stimulus is, on average, 
about 500 milliseconds (Libet 1965). Each additional component of information 
processing required by a cognitive task adds more time between stimulus (input) 
and response (output). Short-term memory consists of primary memory (which is a 
passive, limited capacity, rapid decay storage system) and working memory (which 
is a limited capacity, rapid decay system for manipulating information received 
from primary memory; it has been aptly termed the mind’s scratch-pad). In most 
learning and problem solving, the Working Memory retrieves from long-term 
semantic memory whatever information is needed to interpret the recently input 
information in SThC The semantic memory includes past-learned meanings, rela- 
tionships, and rules or strategies for operating on certain classes of symbols, such 
as words, syntax, numbers and arithmetic operations, musical notation, chess 
moves, and the like. The Working Memory brings the products of past learning 
from LTM into conjunction with novel inputs to arrive at problem solutions or to 
encode and rehearse the perceived relationships of the “new” information to the 
“old“ info~ation in preparation for its storage in Semantic LTM. E~~~~c LZ’M is 
a store of nonsemantically encoded spatial-temporal experiences, which may 
later be semantically encoded for storage in Semantic LTM. 
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Many kinds of learning, and school learning in particular, consist of transferring 
newly input information (which, besides specific knowledge, includes skills, 
strategies, and general heuristics) from Primary STM to Semantic LTM through 
the agency of Working Memory. In computer terminology, the Working Memory 
is analogous to a computer’s central processor. 

The efficiency of the operations performed in a given individual’s Working 
Memory, however, is not constant, but can vary markedly according to the 
processing strategies adopted and the amount of prior practice and overlearn- 
ing the individual has had on a particular type of information input. Single bits of 
information can be “chunked” into larger units, which can then be dealt with as 
single bits by the Working Memory, which thereby, in effect, increases its capac- 
ity for retaining information long enough to execute operations in it. 

Controlled and Automatic Processing. A now important concept in cognitive psychology is 
the distinction between controlled and automatic processing developed by Shiffrin 
and Schneider (19771, and recently applied by Ackerman (1986, 1987) specifically 
to a theoretical formulation of the relation between individual differences in 
learning and intelligence. 

In brief, controlled processing of information demands the individual’s focused 
attention, requires conscious mental effort, is relatively slow, and deals with 
information input sequentially, being able to handle only very limited amounts of 
information simultaneously, or in parallel. Controlled processing may crowd the 
full capacity of Working Memory. It is characteristic of novel problem solving and 
the learning of new knowledge or skills. 

Automatic processing, in contrast, does not demand the individual’s entire at- 
tention, is relatively effortless, and can deal with relatively large amounts of 
information simultaneously. 

The degree to which performance on tasks can become automatic in the 
course of learning or practice depends on how consistent, predictable, or routine 
the information processing demands of the task are. The more consistent the 
required sequence of operations between input and output, the easier it is to 
automatize task performance by means of overlearning, that is, practice continued 
beyond initial mastery. In the Morse code, for example, there is an invariant 
relationship between the letters of the alphabet and their corresponding dot-and- 
dash codes. In highly practiced telegraphers, the act of sending or receiving 
messages has become completely automatic. Automatic processing removes 
most of the burden from Working Memory, which is virtually bypassed when a 
high degree of automatization has been attained. The Working Memory then is 
available for the controlled processing of other information. 

A corollary of the present theory of the relationship between learning and 
intelligence is that performance on cognitive tasks becomes less g loaded to 
the extent that the performance becomes overlearned and automatic, because 8 
largely reflects the controlled processing operations of Working Memory. Each 
new step in learning complex knowledge or skills makes great demands on the 
limited capacity of Working Memory. More of its capacity is left available for 
processing new material when the prerequisite knowledge and skills are highly 
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automatic, so that operations with them do not encumber the Working Memory. 
It is largely automatization of prerequisite knowledge and skills that make it 
possible for experts to learn something new in their field of expertise much easier 
and faster than would be possible for novices, regardless of their IQs. 

Individual differences in the rate at which performances having regular 
and consistent information processing demands can become automatic are 
probably also related to g, although the empirical evidence on this point is still 
sketchy. (For the most complete discussion of individual differences in automatic 
and controlled processing available in the literature, see Ackerman and Schneider 
J19851.1 Whatever is the relation of individual differences in automatization tog, a 
convincing case has been made that failure to automatize certain elementary 
skills is one of the features of some scholastic learning disabilities (Stemberg & 
Wagner 1982). 

Failure to automatize elementary skills can seldom be detected by means of 
ordinary paper-and-pencil tests, especially if they are given without time limit. It 
is possible, for example, that two children could obtain perfect scores on a test of 
simple addition, but one child’s performance would have manifested aufmafic 

processing and the other’s colztiolled processing of the simple addition problems. 
A chronometric test of addition, however, would highlight the difference 
between the two children, who would display gross differences in their speed of 
responding and in the variability of their response times for different problems. 
Response latencies to very simple arithmetic problems, for example, can be 
highly revealing of the specific nature of the subject’s mental processing of them 
(Green & Parkman 19721. I have suggested elsewhere (Jensen 1988) how a variety 
of chronometric techniques could aid in the study and diagnosis of specific 
learning disabilities (Jensen 1987h). 

The relatively unexplored relation of individual differences in rate of auto- 
matization of cognitive skills tog, and especially to children’s scholastic progress, 
promises to be a fruitful subject for future research. As a logical extension of task 
analysis, its principal aims would be threefold: To discover those components of 
school learning that depend most heavily on automatization of information pro- 
cessing, to devise methods for detecting individual learning difficulties that are 
associated with automatization failure, and to develop instructional techniques 
for improving automatization of the specific skills that are essential for pupils’ 
progressing to more advanced levels of reading comprehension, written expres- 
sion, and quantitative problem solving. 

SUMMARY AND CONCLUSIONS 

Recent theory and research related to the topic of this article generally support the 
conclusion that the early phase of investigation of the relation between individual 
differences in learning and intelligence, which has focused on the correlation 
between measures of intelligence (which are usually defensible) and measures of 
learning (which are often questionable), has run its course. Most of the resulting 
evidence, pa~icularly the more recent and methodologi~a~y soundest studies, 
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converge on the conclusion that learning and intelligence are not essentially 
independent factors (i.e., sources of individual differences), although they are 
legitimately distinguishable concepts in terms of the specific psychometric and 
experimental paradigms by which they are studied. Individual differences in 
both psychometric g and in quickness of original learning of novel material seem 
to reflect one and the same general factor of cognitive ability. Both original 
learning and g reflect the efficiency of the construct known as Working Memory 
in information processing models. 

The often apparent disparity between g and learning ability, I suggest, results 
from the fact that the general source of individual differences in cognitive abilities 
that we know as g becomes manifested in multifarious ways through the agency 
of learning, especially through overlearning that results in the automat~ation of 
particular skills and rapid access to information stored in long-term memory. 
Although the g construct itself is content-free and can even be measured to some 
extent on a physiological level, its behavioral manifestations necessarily involve 
context and content in terms of specific cognitive skills and knowledge. The g 
factor of mental abilities is extremely diffuse and therefore especially predomi- 
nates in contexts, like formal schooling, in which the variety and range of original 
learning are extremely broad and in which time constraints permit only some 
fraction of what is learned to become automatic. 

The particular knowledge and skills that eventually become automatic in a 
given individual are probably determined partly by some innate advantage in 
the elementary cognitive processes on which the original acquisition of a particu- 
lar skill depends, but also by the frequency and strength of positive reinforce- 
ments accorded to successful performance, and by opportunity interacting with 
interests and values. Undoubtedly, mere chance and serendipity also play a part. 

Because of these different proclivities and influences, different things are over- 
learned and automatized by persons who are equal in g. In a sense, we can say 
that learning transforms the “raw material” of g (and also probably the major 
group factors) into the achievements in terms of which individuals manifestly 
differ and for which their capabilities are differentially valued by society. Intellec- 
tually and behaviorally, an individual’s conspicuously strongest capabilities and 
achievements, that is, the individuals areas of special expertise, largely reflect the 
individuals repertoire of overlearned and automatized skills and rapidly accessi- 
ble knowledge. This aspect of the individuals capability is usually much more 
exceptional than the individual’s level of 8 and could be scarcely predicted by a 
pure measure of g. This seems to be invariably true of recognized experts, 
accomplished scientists, artists, writers, musicians, and the like, who manifest 
outstanding performance or achievement. The same thing, to some degree, is 
probably true of nearly everyone. 

Future research could well be fruitfully directed toward understanding just 
how individual differences in the interaction of g with the specific context and 
contents of learning eventuate in various forms of intellectual competence, 
expertise, and achievement, with their phenomenal range of individual 
differences. 
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