
Chapter 11
The psychometrics of intelligence

A. R. Jensen

1. INTRODUCTION

1.1 The specificity doctrine
My research interest in human mental abilities grew out of the viewpoint
espoused by Eysenck that I referred to in my introduction as the Galton-
Spearman-Eysenck school. In several of his publications, Eysenck has
contrasted this school of thought about the nature and measurement of
mental ability with the other major approach stemming from the work of
Alfred Binet (1857-1911).

At the behest of the Paris school system, Binet (in collaboration with
Theophile Simon) invented what was probably the first practical test of
intelligence. The Binet-Simon test was also the first mental test to be scaled in
mental-age units. It soon proved highly useful for the diagnosis of mental
retardation among children for whom schooling presented unusual difficulty.
This was a major achievement and is unquestionably a landmark in the history
of mental measurement. Binet was a distinguished experimental psychologist,
Simon a physician, but neither one was a psychometrician in the technical
sense of that term as we understand it today. In fact, the branch of psychology
known as psychometrics had not even come into existence when Binet's test
was published in 1905. Because the basic principles of psychometrics still
awaited Spearman's formulation in terms of what is now known as classical test
theory, Binet and his immediate followers could not possibly have conceived or
described the "intelligence" measured by Binet's test except in terms of the
test's superficial features, such as its specific item content (vocabulary,
counting, form board, paper folding, esthetic judgment, arithmetic operations,
matching forms, etc.), and the inferred mental faculties that the test items
supposedly called upon (memory, discrimination, comparison, reasoning,
judgment, etc.). As Binet's test was considered a measure of intelligence, and
its overall scores (or the derived mental-age) accorded quite well with teachers'
subjective estimates of their pupils' intelligence as judged from their classroom
behavior and scholastic performance, psychologists naturally defined intelli-
gence as the sum of all the kinds of knowledge and skills visibly recognized in
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the items of the Binet test (or of other tests modeled after it). At a somewhat
higher level of abstraction, intelligence was described in terms of all the various
faculties that were surmised to be called for by the particular cognitive
demands made by each of the different types of test items.

I have termed this prevailing conception of what is measured by intelligence
tests the "specificity doctrine." From a strictly psychometric standpoint, it is
easy to prove that the specificity doctrine is absolutely wrong, despite the fact
that it is the prevailing notion among many clinical and applied psychologists—
the very psychologists who use tests the most.

1.2 The fallacy of the specificity doctrine
Spearman was the first trenchant critic of the Binet approach and of the
wrongly conceived specificity doctrine, arguing that its conception of
intelligence and its method for measuring it were based on an arbitrarily
chosen hotchpotch of items that include various kinds of knowledge and
cognitive skills. There is nothing magical about the particular collection of the
items that compose the Binet test. Any other equally diverse collection of items
that tap many different bits of knowledge and skills would do just as well.

But why should this be so? Given the minimum requirement that the items
range widely enough in their level of difficulty to produce reliable individual
differences in the total score, why is the specific item content of the Binet test
(or any other test) of so little importance? Spearman's complaint with Binet's
signal contribution was not so much with the test itself as with the mis-
conception about what it measures, a misconception, incidentally, that has
endured among many psychologists up to the present day. Spearman's key
discovery of what the Binet test (and all other tests of its type) essentially
measures was completely unrealized by Binet. It is my impression that it is no
better understood by many present-day psychologists, not to mention the
popular media and the general public.

1.3 The signal and the noise
To make a long story short, Spearman was the first person to recognize that the
total score on a mental ability test does not measure the ability to do this item
or that, such as being able to define a particular word, know a particular fact,
comprehend a given sentence, recall a string of digits, solve a particular puzzle,
or copy a particular form. The observed individual differences in overall test
scores that we represent as the true-score variance in some defined population
(or a sample thereof) does not reflect individual differences in the specific
abilities needed to perform correctly on this, that, or other items of a test. We
can easily prove this by looking at the correlation between persons' scoring
"right" or "wrong" on any given item and that item's correlation with any other
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item in the test. In the best IQ tests, the average interitem correlation is typically
between +.10 and +.15, and the correlation between any single item and the total
score on a test composed of many diverse items is typically between +.20 and
+.30. In other words, whatever it is that is measured by the test as a whole is
measured only very slightly by each of the test items. The total variance of each
item contains only a faint "signal," which reflects a source of variance (i.e., a
factor) that is common to each and every one of the disparate items that make up
the test. The vast bulk of the variance on any given item, however, is just "noise."
What we can see with the naked eye by examining various test items is only this
noise, that is, the specific bits of knowledge or skill called upon by a particular
item. For any given item, the signal to noise ratio is typically about 1 to 99. But by
aggregating the scores on each of a large number of diverse items to obtain a total
score, the signal to noise ratio for the total score is typically greater than 9 to 1.
The reliability of a test, that is, the percentage of its true-score variance, is about
90% of the total raw-score variance for most professionally developed
standardized mental tests. The remaining 10% of the variance, or the noise, is
the sum of the item variances. By examining each of the items to determine what
the test measures, all that one really sees is the noise (or error component) of the
total test scores. In other words, what we measure as individual differences, or
variance, in total scores mostly consists not of item variances, but of twice the sum
of all the covariances among items. In the total variance of test scores, these two
sources of variance are generally in the ratio of 1 to 9. Unlike test items,
covariances are not "things," or bits of knowledge, or specific skills. One can see
the item content (the noise) by inspecting the items. But one cannot see the item
covariances (the signal), which can only be determined by analytical calculations.

The item covariances originate from the aggregation of the small invisible
signal reflected by each item. (The sum of the item variances, or noise,
constitutes the test's error variance.) The test's true-score variance is solely
attributable to the fact that the diverse items are all positively correlated with
one another, however slightly, thereby producing a total of n(n—1) covariance
terms (where n is the number of items in the test). The sum of all the item
covariances constitutes the test's true-score variance. But the important point I
wish to make here is that the main source of the variance of interest when we
use a test does not reside in the test items per se, but reflects whatever it is that
causes items to be positively correlated with one another. The positive correl-
ation between all cognitive test items is a given, an inexorable fact of nature.
The all-positive interitem correlation matrix is not an artifact of test
construction or item selection, as some test critics mistakenly believe. In fact,
it is empirically impossible to devise a cognitive test that has nonzero variance
and in which there are statistically significant negative interitem correlations.
An imaginary test for which the average interitem correlation is either negative
or zero is the psychometric equivalent of a perpetual motion machine.
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1.4 Distilling psychometric g
The variance attributable to the sum of the factors derived from a factor
analysis constitutes the common factor variance, of which the largest compo-
nent is usually the g factor. (Other common factors typically found in mental
ability tests are verbal, spatial, numerical, and memory.) The g factor, emerging
as it does from correlations among elements rather than from the addition of
elements, is not a compound or conglomerate, but rather is more aptly likened
to a distillate.

Although the g factor is typically the largest component of the common
factor variance, it is the most "invisible." It is the only "factor of the mind" that
cannot possibly be described in terms of any particular kind of knowledge or
skill, or any other characteristics of psychometric tests. The fact that psycho-
metric g is highly heritable and has many physical and brain correlates means
that it is not a property of the tests per se. Rather, g is a property of the brain
that is reflected in observed individual differences in the many types of
behavior commonly referred to as "cognitive ability" or "intelligence."
Research on the explanation of g, therefore, must necessarily extend beyond
psychology and psychometrics. It is essentially a problem for brain
neurophysiology.

1.5 The Galton-Spearman-Eysenck school
In order to focus theory and research in this domain, Eysenck, probably more
than anyone else, has emphasized the importance of D. O. Hebb's classic
distinction between three different meanings of "intelligence," which are
labeled Intelligence A, Intelligence B, and Intelligence C. Failure to observe
these crucial distinctions only obscures theoretical discussion and creates
spurious arguments. Intelligence A refers to the biological (i.e. genetic and
neurophysiological) basis of observed individual differences in Intelligence B
and Intelligence C. Intelligence B is any form of gross observable behavior that
involves cognitive abilities as they are manifested in "real life" circumstances—
in learning, problem solving, memory, general knowledge, verbal facility,
quantitative reasoning, levels of mastery of vocational skills, educational and
occupational level, income, social adeptness, intellectual interests and achieve-
ments, and so on. Intelligence C is the cognitive ability measured by psycho-
metric tests, such as IQ.

These three conceptions of intelligence are of course not independent, and
all are worthy of study in their own right. But Intelligences A and C are far
more amenable to exact scientific study than Intelligence B. The class of
variables that fall under Intelligence B is so unbounded, and the causes of
individual variation at this broad-scope level of observation involve such a
multiplicity of social, cultural, experiential, motivational, and specific con-
textual factors as to frustrate attempts to arrive at a scientifically satisfying
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theoretical formulation. About all we can do with Intelligence B is to
determine the degree of correlation some of its quantifiable aspects have with
both Intelligences A and C, and possibly, by using the techniques of path
analysis, we can test competing hypotheses concerning the causal relationships
between Intelligences B and C.

Intelligence C, such as IQ, is itself problematic in that it reflects to some
extent the particular item composition of the test, more or less, depending on
the number and diversity of the items, which is technically referred to as the
adequacy of psychometric sampling. Differences in psychometric sampling
account for why various IQ tests are not perfectly correlated, although the
correlations even among standard IQ tests that differ markedly in item
composition is quite high, averaging about + .80 (which goes up to about + .90
after correction for attenuation [unreliability]). Because all cognitive tests,
without exception, are positively correlated with one another and therefore,
when factor analyzed together, yield a general factor, g, it makes sense to use g
as the criterion of the adequacy of any given test as a measure of general
mental ability. Thus a measure of Intelligence C, to the extent that it is
correlated with g, is the best psychometric marker available for discovering
which biological variables are involved in Intelligence A. In fact, we now know
empirically that the larger the test's g loading (Intelligence C), the larger its
correlation with biological variables (Intelligence A). In other words, the
process of extracting the g factor from a large and diverse battery of tests
screens out, so to speak, much of the variance in conventional intelligence test
scores that is unrelated to Intelligence A. The g factor is probably closer to the
biological substrate, Intelligence A, than any other measure we can derive from
conventional psychometric tests. A figure often used by Eysenck represents the
variance as the area of a circle and shows the causal influences (arrows) of
different kinds of variables on Intelligences A, C, and B, which in Figure 11.1
are labeled as biological, psychometric, and social intelligence, respectively.

The Galton-Spearman-Eysenck school focuses primarily on Intelligences A
and C. Its research program in this field is aimed first at discovering the
relationship of psychometric g to biological variables, and second at ultimately
explaining the causal nature of the relationship in terms of neurophysiological
mechanisms. A number of possible approaches are available: reaction time
(RT) and inspection time (IT) measures of the speed of information
processing in elementary cognitive tasks, and physiological measures such as
the average evoked potential (AEP), neural conduction velocity, the brain's
glucose metabolic rate (GMR) during problem solving, and brain size
estimated from head measurements or measured directly by magnetic
resonance imaging (MRI). Each of these is worth pursuing, because the
different kinds of data they provide, when viewed in conjunction, may serve as
triangulation points for hypothesizing the nature of the information processes
and their biological mechanisms that are reflected by the g factor derived from
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Figure 11.1. Eysenck's representation of three different conceptions of "intelligence." Biological
intelligence is measured by the electroencephalogram (EEG), the average evoked potential (AEP),
nerve conduction velocity (CNV), the galvanic skin response (GSR), and reaction time (RT).

conventional psychometric tests. For the most recent synthesis of Eysenck's
whole philosophy about the nature and aims of research on intelligence,
readers are referred to Eysenck (1994).

2. REACTION TIME AND PSYCHOMETRIC g

2.1 Introduction
Until 1964,1 had never given any thought to reaction time (RT) in relation to
intelligence. I had learned at some time in the past, probably as an under-
graduate psychology student, that way back in "ancient history" Gallon had
hypothesized a correlation between RT and mental ability of the type pre-
viously described as Intelligence B (since there were no IQ tests at that time). I
also knew that it was common knowledge among psychologists that Gallon's
idea on this point had long since been completely discredited empirically and
that even to suggest that it might possibly still have some merit was a sign of
ignorance or naivete.

In 1964-1965 I spent the academic year of my first sabbatical leave from
Berkeley in Eysenck's department at the Institute of Psychiatry, where seven
years earlier I had spent two years on a postdoctoral fellowship from the
National Institute of Mental Health. I recall that one day in 1964, during the
mid-morning coffee break in the old Maudsley cafeteria, Eysenck joined
several of us at our table and told us in considerable detail and with evident
enthusiasm about an article he had recently read in a German psychology
journal (Roth, 1964). It was a study of RT in which the subject, seated in front
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of a display panel, was instructed to turn off a light as quickly as possible after
its appearance on the panel by touching a button adjacent to the light. The
light that went on (and that was to be turned off by the subject) was presented
on the panel under each of several different conditions, referred to as set-size:
the light appeared either alone (set-size 1), or appeared among sets of 2,4, or 8
lights. In each set-size, any one of the alternative lights would go "on" at
random. Each subject was given a large number of trials under each set-
size and the subject's RT on each trial was measured in milliseconds (ms). (RT
is the interval between the light's going "on" and the subject's touching the
button that turns it "off.") When the RTs for each set-size were averaged over
trials and over subjects, the phenomenon known as Hick's law was clearly
evident. If n is set-size (i.e.,the number of alternative possibilities for which of
the n lights would go "on"), Hick's law states that the increment in RT for each
unit of increase in set-size is equal to the binary logarithm of the set-size, or
ART = k + Iog2« (where k is the RT for n = 1). In information theory, the
unit of information, termed a bit (for binary digit), is measured as the binary
logarithm (Iog2) of the number of alternatives; a bit is the amount of
information needed to reduce uncertainty by one-half. Thus, Hick's law
expresses the linear relationship between amount of information and RT.

But what Eysenck found to be exciting about Roth's study was not that it
confirmed Hick's law (about which there was little doubt, in any case), but that
it showed rather marked individual differences in the slope of the Hick
function (i.e., the linear regression of RT on bits) and, most important, these
individual differences in slope had a significant negative correlation with IQ.
Gallon's original conjecture, via Hick's law, appears to have been sub-
stantiated. It made perfect sense theoretically that, if intelligence were
conceived of as the speed or efficiency of information processing, the rate of
increase in RT as a function of bits should be greater for persons of low IQ
than for persons of higher IQ. It was also of interest to see that here was an
exceedingly simple task that bore absolutely no resemblance to any IQ test and
yet the RT parameters (median RT and the slope of RT/bits) derived from it
were correlated with IQ.

Right then and there, for some reason that I cannot fathom, I felt that this
was perhaps the single most interesting finding I had come across in my total
acquaintance with psychology up to that time. But I did nothing about it. In
retrospect, I think what I should have done was to drop everything else and
immediately go to work on this Hick paradigm and its relation to IQ. But when
I returned to Berkeley I was committed to completing other work in progress
and I had research grants for experiments on the psychology of human
learning. Then I was invited to spend a year at the Center for Advanced Study
in the Behavioral Sciences, where laboratory work was not possible. And so it
went, year after year. Although I went on thinking about the Roth experiment,
of and on, year after year, I found no way to work it into my agenda.
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Then, in 1967, Eysenck sent me a reprint (Eysenck, 1967) of what, for me,
was one of his most important articles. In it, he put forth a theory of
intelligence that was essentially biological and Galtonian, hypothesizing the
speed of information processing as the basis of individual differences in
performance on cognitive tasks. He also explained how Roth's 1964 study of
the correlation between RT and IQ in the Hick paradigm jibed with Gallon's
ideas and brought research on individual variation in mental ability closer to its
biological basis than was possible with conventional psychometric tests. My
long-standing latent interest in this approach, then having been energized by
Eysenck's stimulating article, I applied for a grant to construct the kind of RT
apparatus needed to pursue this line of investigation.

2.2 The Hick paradigm
Figure 11.2 shows the subject's response console for the present model of my
apparatus (in the first model, the lights and their closely adjacent pushbuttons
were separate; in the present model, the pushbuttons themselves would light
up, thereby maximizing the stimulus-response compatibility of the RT task).

The whole sequence of practice trials and stimulus presentations is run by
computer, which also records response times (in ms) and errors on each trial.
The one feature that differs importantly from the procedure used by Roth is
the use of a "home" button, which makes it possible to separate RT from
movement time (MT). RT is the time interval between the onset of the
reaction stimulus (i.e., one of the buttons lighting up) and the subject's
releasing the home button. MT is the interval between the subject's releasing
the home button and pressing the lighted button to turn it off. Typically 15-30
trials are given for each set-size. From these data, five chronometric scores are
derived for each subject: (1) median RT, (2) median MT, (3) the standard
deviation of RT over trials (RTSD), (4) the standard deviation of MT over
trials (MTSD), and (5) the slope of RT across set-sizes expressed as bits.
Figure 11.3 shows the typical results for a group of subjects.

The characteristic features seen in every study (except those based on
severely retarded subjects with IQs below 50) are (1) the significant linear
slope of RT as a function of bits, (2) the near-zero slope of MT as a function of
bits, and (3) that RT is much greater than MT even at 0 bits.

My program of research on the relationship between RT and psychometric g
has extended over a period of more than two decades, and it would be
impossible here even to summarize all of the findings within the allotted limits
of this chapter. Most of these, however, are summarized in considerable detail
elsewhere, along with references to most of the original studies (Jensen, 1982,
1987a, 1987b, 1993a). Here I will simply note some of the main findings,
explain some of the main controversies that have since been more or less
resolved, and note some of the open questions that await further research.
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Figure 11.2. The subject's response console of Jensen's RT-MT apparatus. The panel is 13 in. x
17 in., painted flat black, and tilted at a 30 angle. At the lower center is the home button (black, 1
in. diameter), which the subject depresses with the index finger while waiting for the reaction
stimulus. The semicircle of eight small circles represents translucent pushbuttons (green, 0.5 in.
diameter, each at a distance of 6 in. from the home button); each button can be lit independently.
Touching a lighted button turns off the light. Various plates can be placed over the console to cover
some of the buttons, leaving either 1,2,4, or all 8 buttons exposed to view, making for four different
ECTs, each with a different number of equally likely response alternatives. The binary logarithms
of 1, 2, 4, and 8 exposed buttons are equivalent to 0,1, 2, and 3 bits of information, respectively. A
trial begins with the subject depressing the home button; 1 s later a preparatory stimulus ("beep")
of 1 s duration occurs; then, after a 1-4 s random interval, one of the buttons lights up, whereupon
the subject's index finger leaves the home button and touches the underlighted button. RT is the
interval between a light-button going "on" and the subject's lifting the index finger from the home
button; MT is the interval between releasing the home button and touching the underlighted
button. In each trial only one of the buttons lights up, entirely at random from trial-to-trial.

2.3 Main findings
The basic generalization that follows from the results of this research is that
Gallon's hypothesis that speed of reaction and general intelligence are
intimately related is amply substantiated. Innumerable studies, from my own
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Figure 11J. The median RT and MT obtained on the RT-MT apparatus (Figure 11.2) averaged
over more than 1500 individuals. Note the significant positive slope of RT (RT = 336 + 34 BIT, r
= .998) demonstrating Hick's law, which predicts a linear relationship of RT to the amount of
information measured in BITs. In marked contrast is the nonsignificant slope of MT (MT = 245 +
4.3 BIT, r = .641) (data from Jensen, 1987, Tables 3 and 7).

laboratory and from many others around the world, have shown correlations,
mostly in the range of .30 to .50, between response times and scores on
untuned g-loaded tests, such as IQ. There is no longer the least doubt about
the fact of correlation between RT and g. It shows up not only in the Hick
paradigm (described above), but in every elementary cognitive task (ECT) that
uses RT as the measure of proficiency. The correlations are largest for ECTs in
which the RT is less than 1 s for adults or less than 2 s for elementary school
children. Within this narrow range, the degree of correlation between RT and
IQ is related to the complexity of the cognitive demands made by the ECT
used to elicit RT. If the task is too complex and results in longer RTs, other
factors besides speed of processing intervene to attenuate the correlation
between RT and g.
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Moreover, we have found that RT is more related to g than to any other
factor independent of g that can be extracted from a battery of psychometric
tests. RT correlates with various psychometric tests to the degree that the tests
are g loaded.

RT in a variety of ECTs shows very large and highly significant differences
between criterion groups that differ in mental ability not only as measured by
psychometric tests, but as recognized by common sense, such as:

1. Between the institutionalized retarded or persons in sheltered workshops
and the general run of "normal" persons.

2. Between precocious children who are succeeding in college at 12-14 years
of age as compared with their age-mates who are in the usual school
grades for their age.

3. Between students in a selective university and students of the same age in a
much less selective vocational college.

4. Between young adults (ages 18-22) and much older adults (ages 65-80) of
similar socioeconomic background and level of education (the older adults
have slower RT, especially on the ECTs that are most highly correlated
with g).

RT and MT do not measure the same thing. They are correlated only about
.30, and MT is almost completely unrelated to experimentally manipulated
variations in the complexity of any particular ECT, whereas the manipulation
of complexity has marked effects on RT as well as its degree of correlation with
g. Moreover, in a factor analysis of RT and MT measures from a large number
of quite different ECTs, RT and MT very distinctly come out on different
factors, and MT has no significant loadings on g or on any other factors with
salient loadings on psychometric tests.

Intraindividual variability in RT, measured as the standard deviation of the
individual's RTs over a specified number of trials (hence labeled RTSD), has
lower reliability than the individual's mean or median RT, and yet RTSD is
generally more highly correlated (negatively) with g. Higher IQ persons
maintain more consistent RTs from trial to trial than persons of lower IQ. This
shows up in the degree of skew in the distribution of RTs for a given individual.
In a large number of trials, low IQ and high IQ persons differ relatively little in
their fastest RTs, but they differ markedly in their slowest RTs—low IQ
persons produce many more slow RTs, which makes their RT distribution
more highly skewed. Median RT and RTSD are highly correlated, even when
based on independent sets of RT data, but each measure is to some degree
independently correlated with g, RTSD slightly more so than median RT.
Eysenck, I believe, was the first to suggest that RTSD reflects neural noise in
the brain, which impedes the transmission of information, which is also re-
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fleeted in longer RT. However, the independent correlation of median RT and
RTSD with IQ indicates that RT is not entirely derivative from RTSD, but that
both aspects of RT—speed and consistency—are independently related to IQ.

2.4 Main controversies and possible solutions
In our studies we have almost always used nonspeeded or untimed tests
(usually Raven's Matrices) to measure g, instructing subjects to attempt every
item and to take as much time as they needed. Subjects are usually tested alone
in a quiet room, so there is no chance of their being paced by observing other
individuals who may complete the test sooner. This is important in order to
rule out speediness of test taking as the common factor that might account for
the correlation between RT and g. We have established beyond any possible
doubt that the RT-g correlation is not a result of the speed factor often found
in psychometric tests. The amount of time subjects take to complete a difficult
cognitive test and then- RTs on an ECT have a near-zero correlation.
Moreover, RT is more highly correlated with scores on untimed tests than with
scores on highly speeded tests. At one time, a number of psychologists thought
we were merely rediscovering with our ECTs and measures of RT the clerical
speed factor that had long since been identified by factor analyses of test
batteries that included highly speeded tests. But the very tests that best
measure the psychometric speed factor have the lowest correlations with RT
and also with g. In brief, RT and RTSD certainly do not measure speediness of
test taking.

How, then, can we explain why RT on ECTs that are so simple that all
subjects can perform them with very few or no errors are substantially
correlated with performance on untimed tests that involve complex reasoning
and that measure individual differences in terms of the number of correct
answers, which reflects the level of item complexity and difficulty at which the
subject can successfully perform?

At least one part of the answer involves what cognitive theorists refer to as
the capacity of working memory, that is, the amount of information that can be
retained and manipulated in conscious awareness before any information is
lost through interference from new input or decay of memory traces. The
importance of processing speed in the operation of working memory stems
directly from the capacity limitation and the rapid decay of information in
short-term memory (STM). The limited capacity of working memory severely
restricts the number of operations that can be performed at any one time on
the information that enters the system from external stimuli or from retrieval
of information stored in primary memory or in long-term memory (LTM).
Quickness of mental operations is advantageous because more operations per
unit of time can be executed without overloading the system. Also, because
there is rapid decay of stimulus traces in the sensory buffers and of information
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in STM, there is an advantage to speediness of any operations that must be
executed on the information while it is still available. To compensate for
limited capacity and rapid decay of incoming information, the individual
resorts to rehearsal and storage of information into LTM, which has a
relatively unlimited capacity. But the process of storing information in LTM
itself uses up channel space, so there is a "trade-off' between the storage and
the processing of incoming information. The more complex the information
and the more operations that are required on it, the more time that is
necessary, and consequently the greater is the advantage of speediness in all
the elementary processes involved. Loss of information due to overload
interference and decay of information that was inadequately encoded or
rehearsed for storage and retrieval from LTM results in a failure to grasp all of
the essential relationships among the elements of a complex problem needed
for its solution. Speediness of information processing, therefore, should be
increasingly related to success in dealing with cognitive tasks to the extent that
their information load strains the individual's limited capacity. The extreme
simplicity of the ECTs, for which RT is therefore the only reliable source of
individual differences, permits us to measure the speed of information
processing when the capacity of working memory is not threatened by the
complexity of the task. Increasing the complexity of the ECT, as in going from
1 bit to 3 bits in the Hick paradigm, increases the RT-g correlation. But when
the task complexity is so great as to exceed the capacity of many subjects'
working memory, then the number of erroneous responses, rather than RT,
becomes the stronger correlate of g.

It is noteworthy that RT correlates only with g and not with any other
psychometric factors independent of g, even when the reaction stimuli of the
ECT are specifically designed to be either spatial, or verbal, or numerical and
the psychometric tests with which the RTs are correlated are either spatial,
verbal, or numerical. Statistically remove the general factor from the three
types of psychometric tests and their correlation with the verbal, spatial, or
numerical RTs is virtually zero.

Thus RT is a rather ideal tool for experimentally studying the task variables
that cause a given task to be more or less g loaded. RT is highly sensitive to
rather subtle experimental manipulations of the quantity of the information
load of the task, which can be varied experimentally without in the least
altering the type of information content or any of the stimulus or response
aspects of the task. Increasing the task demands (resulting in RTs of not more
than about 1 s) is found to increase the g loading of the RT parameters. In the
Hick paradigm, for example, one-bit increments in the reaction stimulus cause,
on average, only about 30 ms. increments in RT. The correlation of RT with IQ
increases linearly from about —.20 for 0 bits of information to about —.30 for 3
bits. These are small but significant correlations, and their linear slope as a
function of bits is also significant.



234 Intelligence

2.5 Open questions
The original experiment by Roth (1964) based on the Hick paradigm reported
a significant correlation (—.39) between IQ and the slope of RT as a function
of bits. This was a theoretically important finding, which meant that as the
information processing demand of the task was increased, the advantage of
higher IQ increased, as reflected by the higher IQ subjects' relatively faster RT.
The majority of later studies, however, failed to replicate the relatively large
correlation between IQ and RT slope originally reported by Roth, and this
aspect of the RT-IQ relationship was more or less dismissed as if it had been
totally discredited. True, the N-weighted mean correlation based on 32 inde-
pendent studies was only —.165, though it is significant at p < .001. But the
test-retest reliability of the slope measure (determined in six studies) is only
.39. When corrected for attenuation, the RT slope correlates with IQ about
—.26. For comparison, in the same 32 studies, the disattenuated mean
correlation between IQ median RT is — .24 (p < .001), and the mean dis-
attenuated correlation between IQ and RTSD (i.e., intraindividual variability
of RT) is —.34 (p < .001). Thus when test-retest reliability is taken into ac-
count, the slope parameter shows, on average, about the same correlation with
IQ as the median RT, and RTSD has the largest correlation with IQ.

Groups that differ in their average IQ show sizable mean differences in the
Hick slope parameter, always in the theoretically predicted direction. For
example, school students in regular classes and students in academically
"gifted" classes differ .50 to .70 of a standard deviation (SD) in mean slope;
university students and vocational college students differ about .50 SD; and
black and white vocational students differ 0.34 SD (all of these differences
significant beyond the .01 level).

Thus the Hick slope parameter accords with the theoretical implications first
noted in Roth's study and elaborated upon in Eysenck's (1967) article. The
measure of RT slope, like median RT, appears to be correlated only with theg
component of a test's variance. When each of the 12 subtests of the Wechsler
IQ battery was correlated with slope in the Hick paradigm, there was a rank-
order correlation of —.83 (p < .01) between each of the subtests' g loadings and
the degree to which each subtest is correlated with slope. That is, a test's
correlation with slope proved a highly valid predictor of the test's g loading. If
the three parameters of RT—median RT, slope, and RTSD—can be inter-
preted as measures of the speed and efficiency of information processing, then
we may conclude that the speed and efficiency of information processing is at
least a part of g. When RT parameters from a number of different ECTs are
combined (either by multiple regression or by simple addition of their unit-
weighted z scores), the RT-IQ correlations approach -.60.
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2.6 The odd-man-out discrimination task
To increase the information processing demands of the RT task, using the
same RT-MT apparatus shown in Figure 11.2, Frearson and Eysenck (1986)
cleverly modified the procedure to create an odd-man-out discrimination task.
All eight of the light-button alternatives are in view on the subject's response
console. On each trial, three of the eight lights go "on" simultaneously; two of
the lights are always closer together than the third, which is the odd-man-out.
For example, if we imagine that the light-buttons are numbered from 1 to 8,
the odd-man-out pattern would be such as 1, 2, 4; or 2, 4, 7, and so on. (With 8
light-buttons there are 44 possible odd-man-out patterns.) The subject is
instructed to respond as quickly as possible to touch the odd-man-out button,
which instantly turns off all of the lights. Again, RT is the interval between the
three lights going on and the subject's releasing the home button. While the 3-
bit condition of the Hick yielded RT-IQ correlations of about —.30 in samples
of university students, the odd-man-out procedure resulted in RT-IQ correl-
ations of about -.60, which approximates the average correlation between the
individual subtests of the Wechsler scale and the Full Scale IQ, and is about
the size of the correlation between the Wechsler IQ and the Raven IQ in our
student population.

Using the odd-man-out procedure along with the Hick procedures (all using
the same response console), we tested over 800 white and black school children
in grades 4-6 to test a hypothesis of Spearman's using RT-MT measures rather
than ordinary psychometric tests. Spearman (1927) had suggested that the size
of the standardized mean black-white difference on various psychometric tests
is directly related to the test's g loading. Spearman's conjecture had already
been strongly borne out in 12 studies based on conventional tests (Jensen,
1985). The question was whether it would be borne out using RT in tasks that
varied in information load (and hence in g) but contained no specific
informational content. The tasks were so easy that the most difficult task in the
battery (the odd-man-out task) could be performed with 100% accuracy by 4th
to 6th graders with RTs of less than 1 s (the average being about 700 ms) The
g-loadings of the various RT and MT measures derived from the Hick and odd-
man-out paradigms were indeed correlated with the standardized mean black-
white differences on these chronometric measures in accord with Spearman's
hypothesis and the correlation was even higher than for conventional psycho-
metric tests. The correlation between the g loadings of the chronometric
measures and the mean black-white differences on those measures was .80,
p < .01 (Jensen, 1993b).

2.7 The non-% RT factor
For a long time, researchers thought there was a virtually inexorable correl-
ation ceiling, at about -.35, between RT and IQ. Research with the Hick
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paradigm produced results that were generally consistent with this rather low
correlational ceiling, even when the RT measures were corrected for
attenuation or were made highly reliable by averaging RTs over a very large
number of trials. (I found that increasing the number of RT trials by any given
amount yields reliability coefficients that accord perfectly with the reliability
predicted by the Spearman-Brown prophecy formula.) The ceiling, therefore,
cannot be blamed on reliability. Increasing the information processing
demands of the task, as in the odd-man-out procedure, surely breaks through
the —.35 ceiling, but the odd-man RT has its own correlation ceiling, between
—.5 and —.6. As already noted, if the processing demands result hi RTs greater
than about 1 s (in university students), the RT-IQ correlation markedly
shrinks.

I hypothesized that the RT measured by any one procedure is much like a
highly homogeneous psychometric test, that is, one in which all of the items are
so equivalent as to be almost identical. We know that such an extremely
homogeneous psychometric test, whatever its content and however reliable its
scores, has a relatively low correlation with psychometric g. The most g-loaded
tests are those that have quite heterogeneous items in terms of their types of
cognitive demands. The Wechsler Full Scale IQ, for example, is much more g
loaded than any one of its relatively homogeneous subtests. The items of the
highly g loaded Raven Matrices superficially appear to be highly homogeneous,
but actually the Raven items demand many different types of problem solving.

Therefore, according to my hypothesis, it should be possible to obtain much
higher correlations if we combined the RTs from a number of quite different
ECTs, each of which was simple enough to minimize erroneous responses and
elicit RTs in the range below 1 s. As in ordinary psychometric tests, the
specificity of each ECT should average out, allowing the emergence of the
common factor in the RTs from each of the different ECTs, namely g. So we
used a battery of different ECTs, each of which theoretically tapped a different
information process (indicated here in parentheses): the Hick (stimulus
apprehension and choice), the odd-man-out (discrimination), the Neisser
paradigm (speed of visual scanning), the Saul Sternberg paradigm (speed of
scanning STM), the Posner paradigm (speed of accessing information in
LTM), the semantic verification test (speed of matching symbols with mean-
ings), dual tasks (divided attention between two tasks, thereby straining
working memory capacity), and inspection time (speed of making a simple
visual discrimination). Indeed, the simple summation of the RTs and RTSDs
obtained from all of these paradigms resulted in a correlation with
psychometric g slightly greater than .60 and approaching .70 after corrections
for attenuation and restriction of range in the college population. The
correlations are scarcely larger between different standard psychometric tests,
such as the Wechsler, the Raven, the Terman Concept Mastery Test, and the
Multidimensional Aptitude Battery.



The psychometrics of intelligence 237

But a hierarchical factor analysis of the correlation matrix containing a
number of conventional psychometric tests along with RT measures derived
from various ECTs reveals why there is an inexorable ceiling to their
correlation with psychometric g, regardless of how many different RT
measures we may combine in a single score. The reason is that the variance
of each RT measure based on a different paradigm does not consist only of g
plus the specificity of each paradigm. There is another quite large factor
besides g common to all of the various RT measures, which can be called a
non-g RT factor (Jensen, 1994). (There is also variance that is specific to each
RT paradigm.) In other words, RT tasks all measure g to some extent, but they
also measure an RT factor that is unrelated to any factors measured by
conventional psychometric tests. The total true-score variance of RT is divided
between g, a non-g RT factor, and the specificity of the particular ECT. The g
and non-g components of RT vary with the complexity of the ECT, the g
component being larger in the more complex tasks. But the ubiquitous
presence of the substantial and apparently noncognitive RT factor rather
severely limits the practical usefulness of any ECT, or even the combination of
several ECTs, as an alternative method for measuring the same g factor that we
can measure quite accurately and efficiently with a standard psychometric test.
The noncognitive RT factor, which seems to reflect individual differences in a
purely perceptual-motor speed or coordination ability, may be of interest in its
own right, and it is presently being researched by personnel psychologists in the
Air Force for its possible predictive validity in the selection of recruits for pilot
training.

2.8 Top-down, bottom-up and physiological explanations

Hardly a month goes by without some new ECT for measuring RT appearing
in the psychological literature (particularly in the journals Intelligence and
Personality and Individual Differences). In nearly every study there is found a
significant correlation between RT and psychometric g, and each such study
usually throws some light on the experimental variables that affect this
correlation. What is still unclear is the precise basis of the correlation between
RT and the g derived from nonspeeded psychometric tests—whether it is a
matter of individual differences in RT being influenced by whatever higher-
level cognitive processes are possessed by high-g persons (who are high-g for
reasons having no causal relation to RT), or whether RT reflects differences in
the speed and efficiency of the basic neural processes that cause differences in
psychometric g. These two alternative possibilities are known as the "top-
down" versus the "bottom-up" theories of the RT-IQ correlation. Different
researchers prefer one or the other, but the issue has not been definitively
decided empirically.
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T. E. Reed and I had hoped that by finding a correlation between nerve
conduction velocity (NCV) in the brain's visual tract, from the retina to the
visual cortex, it would rule out the top-down theory, because the NCV is
measured long before the neural impulse has reached the higher association
centers that are necessarily involved in the kind of knowledge retrieval or
problem solving typically demanded by untimed psychometric tests. There was
indeed a significant correlation (-.27, corrected for range restriction in a
college sample, -.38) between individual differences in NCV and IQ (Reed &
Jensen, 1992). This finding clearly supports the "bottom-up" hypothesis, at
least as regards NCV and IQ. But alas, it does not enlighten the issue regarding
RT and IQ, because we found that the measure of NCV in the visual tract is
not correlated with RT as measured by the Hick or the odd-man-out
procedures (Reed & Jensen, 1993). This puzzle suggests new hypotheses, but
there is as yet no compelling explanation. Speculation should be postponed,
however, until a replication of these results insures their reliability.

3. CONCLUSIONS AND PERSPECTIVE

Clearly, much remains to be learned about the nature of g through further
investigations into the causes of its relation to RT. Using a variety of
experimentally manipulated ECTs to achieve the maximum possible correla-
tions between RT and g, it is then possible to investigate the physiological
correlates of these RTs with measures of NCV, AEP, and glucose metabolic
rate in localized regions of the brain. There is good reason to believe that a
program of research utilizing such techniques carried out by a number of
independent laboratories dedicated to this common goal will, in the foresee-
able future, realize what Spearman (1927) envisaged as the aim of research on
human intelligence: "The final word on the physiological side of the problem
[of g] ... must come from the most profound and detailed direct study of the
human brain in its purely physical and chemical aspects."

I conclude by noting that it was entirely through Eysenck's influence that I
began reading Gallon and Spearman in the first place, and it is exceedingly
improbable that my two decades of researching the connection between RT
and g would ever have ensued had I not once heard Eysenck talk about Roth's
experiment with the Hick paradigm and caught some of his enthusiasm for the
subject.
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