
Psychometric g: 
Definition and Substantiation 

Arthur R. Jensen 
University of Culifornia, Berkeley 

The construct known  as psychometric g is arguably the most important 
construct in all of  psychology  largely because of its ubiquitous presence in 
all  tests of mental ability and its wide-ranging predictive validity for a 
great many  socially significant variables, including scholastic performance 
and intellectual attainments, occupational status, job performance, in- 
come, law abidingness, and welfare dependency. Even  such nonintellec- 
tual variables as myopia, general  health, and longevity, as  well  as  many 
other physical traits, are positively related to g. Of course, the causal con- 
nections in the whole nexus of the many diverse phenomena involving the 
g factor is highly complex. Indeed, g and its ramifications cut across the 
behavioral sciences-brain  physiology,  psychology,  sociology-perhaps 
more  than any other scientific construct. 

THE DOMAIN OF g THEORY 

It is important to keep in mind  the distinction between intelligence and g ,  
as these terms are used here. The psychology  of intelligence could, at least 
in theory, be based on  the study of one  person, just as Ebbinghaus discov- 
ered some of the laws  of learning and memory in  experiments with N = 1, 
using himself  as  his experimental subject. Intelligence is an  open-ended 
category for all those mental processes we  view  as cognitive, such as stimu- 
lus apprehension,  perception,  attention, discrimination, generalization, 
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learning and learning-set acquisition, short-term and long-term memory, 
inference, thinking, relation eduction, inductive and deductive reasoning, 
insight, problem solving, and language. 

The g factor is something else. It could never have been discovered with 
N = 1, because it reflects individual di,fferences in  performance on tests or 
tasks that involve  any one  or  more of the kinds of processes just referred  to 
as intelligence. The g factor emerges from  the fact that  measurements of  all 
such processes in a representative sample of the  general  population are 
positively correlated with each other,  although to varying degrees. 

A factor is a hypothetical source of individual differences measured as a 
component of variance. The g factor is the  one source of variance common 
to  performance  on all cognitive tests,  however diverse. Factors that  are 
common to only certain  groups of  tests that call for similar mental  proc- 
esses, or a  particular class  of acquired knowledge or skills, are termed 
groufi factors. 

The g factor should be thought of not as a summation or average of an in- 
dividual’s scores on a  number of diverse tests, but rather as a distillate from 
such scores. Ideally, it reflects  only the variance that all the different tests 
measure in common. The procedure of “distillation’’ that identifies the 
common factor, g,  is factor analysis, a class  of mathematical algorithms  de- 
veloped following the invention of principal components analysis in 190 l 
by the statistician Karl Pearson (1 857-1 936) and of common factor analy- 
sis in 1904 by Charles Spearman  (Jensen, 2000). These  methods are now 
used in a  great many  sciences  besides  psychology, including  quantum me- 
chanics, geology, paleontology, taxonomy, sociology, and political sci- 
ence. Readers who  want a brief introduction to the workings of factor anal- 
ysis are  referred to the tutorial articles by John B. Carroll (1 979, 1983, 
1997). 

FACTOR MODELS 

Factor analysis can represent  the correlational structure of a set of vari- 
ables in different ways, called factor models. Depending on  the  nature of 
the variables, certain models can represent  the  data  better  than some 
other models. Factor models fall into two main categories: hierurchicul and 
nonh.ierarchica1. 

The simplest model  represents Spearman’s two-factor  theory of abilities, 
in which each test variable reflects  only two sources of true-score vari- 
ance-a general factor (9 )  common to all  of the variables in the analysis 
and a specific factor (s) peculiar to each test. A variable’s uniqueness (u)  
(shown for each of the  nine variables in Fig. 3.1) consists  of the variable’s 
specificity (s) and  random  measurement  error ( e ) .  In this simplest model, 
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FIG. 3.1. The two-factor model of Spearman, in which  every test measures 
only two factors: a  general factor g that all tests of  mental ability have in 
common and  a factor u that  is unique (or specific)  to  each  test. From Jensen 
and  Weng (1994). Used with permission  of  Ablex. 

only one factor, g, accounts for all of the correlations among  the variables. 
The correlation between  any two variables is the  product of their g factor 
loadings.  Although it was seminal  in the history of factor analysis, 
Spearman’s model has usually proved inadequate to explain  the  correla- 
tion matrix of a  large  number of diverse tests. When g is statistically 
partialled  out of the correlation matrix and many significant correlations 
remain,  then clearly other factors in  addition  to g are required to explain 
the  remaining correlations. 

Burt (1 941) and  Thurstone (1 947), therefore, invented multiple factor 
analysis. Illustrated in  Fig. 3.2, it is not  a hierarchical model. The three 
group factors (Fl, F 2 ,  F3)  derived from the  nine variables are also called 
primary or jrst-order factors. In this illustration there is no general factor, 
only three  independent  (uncorrelated) factors, each comprising  three 
intercorrelated variables. This model, originally hypothesized by Thur- 
stone, didn’t work out as he  had  hoped.  Thurstone had believed that  there 
is some limited number of independent primary mental abilities, so he ro- 
tated the factor axes in such a way as to make them  uncorrelated with each 
other  and to equalize as much as  possible the variance accounted for by 
each of the factors, a set of conditions he referred to as simple structure. But 
this model never allowed a clear fit of the  data, because every test battery 
he could devise,  however homogeneous the  item  content of each of the di- 
verse cognitive tests, always contained  a  large  general factor. Though  he 
tried assiduously to construct sets of uncorrelated tests, he  found it abso- 
lutely impossible to construct mental tests that were not positively corre- 
lated with each other to some degree.  In order to achieve a clean fit of the 
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u l  u2 u3 u4 u5 u6 u 7  u8 u9 
FIG. 3.2. The mdtiple factor model originally put  forth by Thurstone 
(1887-1955), in which different sets of related variables ( V )  form a num- 
ber  of  uncorrelated  factors  (Fl, F 2 ,  F3, etc.). This  model,  therefore, has 
no general factor. From Jensen and Weng (1994). Used with permission of 
Ablex. 

first-order factors to  the  separate clusters of tests, instead of orthogonal 
rotation of the axes he resorted to obligue rotation of the factor axes (i.e.? 
the  angle  subtending any pair of axes is less than  go”), thereby allowing 
the first-order factors (e.g., F1, F2, F3)  to  be intercorrelated. The one fac- 
tor common to these first-order factors, then, is a second-order  &tor, which 
is g. The first-order factors thus are residualized, that is, their  common vari- 
ance is moved up to the second-order factor, which is g. This is a  hierarchi- 
cal  analysis,  with two levels. 

A nonhierarchical  approach to multiple factor analysis that reveals the 
group factors as  well  as g was proposed by Karl Holzinger,  one of 
Spearman’s PhD students and later  a professor at  the University  of Chi- 
cago. His bifactor model is now  only one in a class  of similar solutions 
called nested factor models. As shown  in  Fig. 3.3,  a  nested  model first ex- 
tracts the g factor (i.e.,  the first principal factor, which accounts for more 
of the total variance than any other single factor) from every variable, and 
then analyzes the residual common factor variance into  a  number of 
uncorrelated  group factors. Note that  there is no hierarchical dependency 
between g and  the  group factors in the nested model. Discussion of the 
nested model’s theoretical and technical advantages and disadvantages as 
compared with the hierarchical model is beyond the scope of this chapter, 
but this has been nicely explicated elsewhere (Mulaik 8c Quartetti, 199’7). 

In  the abilities domain,  the orthogonalized  hierarchical  model has gained 
favor, especially  with respect to identifying the same group factors across 
numerous different studies often based on different tests of the same basic 
abilities (Carroll, 1993). When a small matrix (fewer than 15 tests) is ana- 
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u l  u2 u3 u4 u5 u6 u7 u8 u9 

FIG. 3.3. A nested multifile factor model, which  has a  general factor g in addi- 
tion to nlultiple factors F1, F 2 ,  etc. Holzinger’s bifactor model was the first 
of this type of model. From Jensen and Weng (1 994). Used with permission 
of  Ablex. 

lyzed the factor hierarchy usually has only two strata-the first-order fac- 
tors and g appearing  at  the second order. When there is a  large  number of 
diverse tests there  are many more  first-order factors. When these are fac- 
tor analyzed, they may yield  as  many  as  six  to eight  second-order factors, 
which then yield g at  the  third  order. 

Applying the hierarchical model to several hundred  correlation  matri- 
ces from the psychometric literature, Carroll (1993) found  that g always 
emerges as either  a second-order or  a  third-order factor. Inasmuch as g is 
ubiquitous in all factor analyses of cognitive ability  tests, Carroll was more 
concerned with the identification of the  other reliable and replicable fac- 
tors revealed in the whole psychometric literature to date.  He found  about 
40 first-order factors and 8 second-order factors, and, of course, the ubiq- 
uitous g. None of the  hundreds of data sets analyzed by Carroll yielded 
any factor above a  third-stratum g. He refers to the  model  that embraces 
these empirical findings as the  “three-stratum theory” of human cognitive 
abilities. 

A simple two-strata hierarchical analysis is illustrated in Fig. 3.4. The 
three  first-order factors (Fl, F2,  F3) might be identified by the tests loaded 
on  them, for instance, as verbal, numerical, and spatial ability factors. The 
numbers on the arrows are  the path coefficients (correlations) between fac- 
tors and variables at different levels  of the hierarchy. Avariable’s g loading 
is the  product of the  path coefficients leading from the  second-order fac- 
tor (g) to the first-order factor ( F ) ,  then to the variable (V) .  The g loading 
of V1, for example, is .9 X .8 = .72. The correlation between any two vari- 
ables is the  product of the shortest pathway connecting  them. For exam- 
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u l  u2 u3 u4 US u6 u 7  US ~9 

FIG. 3.4. A hierarchical factor model in which the group factors ( F )  are 
correlated, giving rise to the higher order factor g. Variables ( V )  are corre- 
lated with g only via their correlations with the  group factors. The correla- 
tion coefficients are shown alongside the arrows. The 24 is a variable’s 
“uniqueness” (i.e., its correlation with whatever it does not have in  common 
with  any of the  other eight variables in the analysis). Reproduced  from 
Jensen and Weng (1994) with permission. 

ple, the  correlation between Vl and V9 is .8 X .9 X .7 X .4 = 2016. The 
factor structure is completely orth,ogonalized, apportioning  the variance ac- 
counted for in each variable by g and by F independently by means of 
an algorithm known  as the Schmid-Leiman orth,ogonalixation transformation, 
which  leaves  all the factors that  emerge from the analysis perfectly uncor- 
related with one  another (Schmid & Leiman, 1957). The final result is 
shown  as a factor matrix in Table 3.1. The percent of the total variance ac- 
counted for by each factor is shown in the last row and  the communality 
(h2) of each variable is shown in  the last column; it is the  proportion of a 
single variable’s total variance that is accounted for by all  of the common 
factors in the set of variables subjected to the factor analysis. In this exam- 
ple, only 37.33% of the total variance in all of the variables is accounted 
for by the common factors, of  which 68.1% is accounted for by g.  The cor- 
relation between  any two variables is the  product of their g loadings plus 
the  product of their loadings on  the first-order factors. 
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TABLE 3.1 
An Orthogonalized  Hierarchical  Factor  Matrix 

~ 

Factor  Loadings 

2nd Order First Order Communality 

Variable g F, F2 4 h 2  

.72 

.63 

.54 

.56 

.48 

.40 

.42 

.35 

.28 
25.4 

.35 

.3 1 

.26 
.42 
.36 
.30 

.43 

.36 

.29 
3.1 4.4  4.4 

.64 

.49 

.36 

.49 

.36 

.25 

.36 

.25 

.16 
37.33 

*Percent of total variance  accounted  for by each  factor = the  sum of the  squared  factor 
loadings. Besides g ,  which is common  to all of the  variables,  there  are  three  uncorrelated 
group  factors (FI ,   F2,  F3). 

HOW INVARIANT IS g? 

An important question regarding g as a scientific construct is its degree of 
invariance. Ifg varied across different methods of factor analysis, or differ- 
ent batteries of diverse mental tests, or different populations, it would be 
of relatively little scientific interest. Although this question has not  been 
studied as thoroughly as the  importance of the subject warrants, the  an- 
swers based on  the most relevant data available at present indicate that g is 
indeed  a remarkably stable construct across methods, tests, andpopulutions. 

Across Methods 

Applying the 10 most frequently used methods of factor analysis (and 
principal components analysis) to the same correlation matrices, both for 
artificial data in which the  true factor structure was perfectly known and 
for real data, it was found that every method yielded highly similar g fac- 
tors, although some methods were in slightly closer agreement with the 
known true factor loadings than were others  (Jensen 8c Weng, 1994). The 
mean correlation between g factor loadings was more  than + .90, and the 
different g factor scores  of the same individuals were correlated across the 
different methods, on average, +.99. It makes little practical or theoreti- 
cal difference which method is used to estimate g for a given battery of 
tests. The group factors, however, are generally less stable than g. 
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Across Tests 

Thorndike  (1987)  examined  the stability ofg across different test batteries 
by extracting a g factor by a  uniform  method  from  a  number of 
nonoverlapping test batteries, each composed of  six  tests selected at  ran- 
dom  from  a pool of 65 exceedingly diverse ability  tests used in the U.S. Air 
Force. Included  in each battery was one of the same set of  17 “probe’’ tests, 
each of them  appearing once in each of the test batteries. The idea was to 
see how similar the g loadings of the  probe tests  were across the  different 
batteries. The average correlation between the  probe tests’ g loadings 
across all the different test batteries was +.85. From psychometric princi- 
ples it can be deduced  that this correlation would increase asymptotically 
to unity as the  number of  tests included in each battery increased.  This im- 
plies that  there is a  true g for this population of cognitive tests, of  which 
the  obtained g is a statistical estimate, just as an obtained score is an esti- 
mate of the  true score in classical measurement  theory. 

Across Populations 

Provided that all the subtests in a test battely are psychometrically suitable 
for the subjects selected from two or more different populations, however 
defined,  the  obtained g factor of the battery is highly similar across the dif- 
ferent  populations. By psychometrically  suitable is meant  that  the tests have 
approximately the same psychometric properties such  as similar reliability 
coefficients, absence of floor and ceiling effects, and quite similar correla- 
tions between each item and  the total score (i.e.,  the item-total correlation). 
When such criteria of adequate  measurement are met, the average con- 
gruence coefficient between the g loadings obtained  from  representative 
samples of the American Black and White populations in a wide  variety of 
test batteries is + .99, or virtual identity (Jensen, 1998, pp. 99-100; 
374-375). The same congruence coefficient is found between the g load- 
ings of the  Japanese  on  the  Japanese version of the Wechsler Intelligence 
Scale subtests (in Japan)  and  the g loadings in  the American standardiza- 
tion sample. Similar congruence is found in European samples (Jensen, 
1998, pp. 85-86). 

FLUID AND CRYSTALLIZED  INTELLIGENCE 
(Gf AND Gc) 

These terms and their symbols  were coined by Spearman’s most famous 
student, Raymond B. Cattell (1971). They emerge as group factors at  the 
stratum just below g, as second-order factors. Gfis most highly loaded  on 
nonverbal tests that call for novel problem solving (e.g., Wechsler Block 
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Designs,  Raven’s matrices, figural analogies), inductive reasoning, and 
short-term memory for newly learned  material  (e.g.,  the backward digit 
span test). Gfis aptly defined as  what  you use when you don’t know what to 
do.  It  enters  into new learning and solving  novel problems for which the 
individual has not already acquired some specific algorithm, strategy, or 
skill for tackling the  problem. Also, response times (RT) to elementary 
cognitive tasks (ECTs) that involve a simple decision (e.g., press the left- 
hand  button when the  red light goes on; press the  right-hand  button when 
the  green light goes on)  are typically more  loaded on Gf than  on Gc. 

Gc is loaded in tests of  accu1turatio.n and past acquired verbal and scho- 
lastic knowledge, general information, and problems for which individu- 
als  have prior  learned relevant concepts and specific solution strategies 
(e.g., general information, vocabulary, arithmetic  problems). Gc is espe- 
cially characterized by the individual’s having to  draw on  long-term mem- 
ory for past-acquired information and skills. 

In a homogeneous population with respect to  education and cultural 
background, measures of Gf and Gc are always highly correlated. Along 
with other  second-order factors, therefore, they  give rise to  the  higher  or- 
der factor g. In Cattell’s investment theory, the correlation between Gf and 
Gc comes about because persons invest Gf in the acquisition of the variety 
of information and cognitive skills that constitute Gc, and therefore over 
the course of interacting with the total environment, those who are  more 
highly endowed with Gf attain  a  higher level  of Gc. 

In a  number of  very large hierarchical factor analyses  of a wide  variety 
of tests where g is the  highest-order factor and the  group factors at lower 
levels in the hierarchy have been residualized (i.e., their g variance has 
been removed to the  next  higher  stratum),  the Gffactor disappears alto- 
gether. That is, its correlation with g is unity, which means that g and Gf 
are really one  and  the same factor (Gustafsson, 1988). The residualized Gc 
remains as a  first-order or second-order factor, loading mainly on tests of 
scholastic  knowledge and skill. Nevertheless, Gc is of great practical im- 
portance for a person’s success in education, in employment, and in the 
specialized expertise  required for success in every  skilled occupation. 

When a  large collection of  highly varied tests of crystalized abilities is 
factor analyzed, a  general factor emerges that is much more like g than it 
is like Gc. It is obvious that Gf, Gc, and g are  not clear-cut constructs and 
that Cattell’s  claim that  he  had split Spearman’s g into two distinct factors 
is misleading. The generality of g is remarkably broad, with significant 
Ioadings in tests and tasks  as disparate as  vocabulary, general  information, 
reaction time, and inspection time (Kranzler 8c Jensen, 1989; Vernon, 
1989). 

Because the ability to acquire new knowledge and skills (hence Gf) typi- 
cally declines at a faster rate in later maturity than  the memory of past ac- 
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quired and well practiced knowledge and skills (hence Gc), the Gf-Gc dis- 
tinction has proved most useful in studies of the  maturation and aging of 
cognitive abilities. This increasingly important topic is beyond the scope 
of this chapter; references to the relevant literature are given elsewhere 
(Horn 8c Hofer, 1992). 

THE EXTERNAL VALIDITY OF g 

If the g factor were related only to purely psychometric variables, or were 
only a result of the way cognitive tests are constructed, or were solely an ar- 
tifact of the mathematical procedures of factor analysis, it would be of little 
scientific or practical interest. But this, in fact, is not  the case. 

First of all, it should be  known that  a  general factor is not  a necessary 
characteristic of a correlation matrix,  nor is it the inevitable result of  any 
method of factor analysis. The empirical finding of positive correlations 
among all cognitive tests is not  a methodological artifact, but an empirical 
fact. It has proved impossible to construct cognitive tests that reliably  show 
zero or negative correlations with one  another.  In  the personality domain, 
on  the  other  hand,  although  there  are  a  great many measures of personal- 
ity and these have been extensively factor analyzed by every  known 
method,  no  one has yet found  a  general factor in  the personality domain. 

Moreover, g is not  a characteristic of  only certain cognitive tests but  not 
of others. If one examines the g loadings of  all  of a  great many different 
mental ability  tests in current use, it is evident that g factor loadings  are  a 
continuous variable, ranging mostly  between +. 10 and + .90, and  the fre- 
quency distribution of  all the loadings forms a fairly normal, bell-shaped 
curve with a  mean of about + .60 and a  standard deviation of about .15 
(Jensen, 1998, pp. 380-383). Yet factor analysis has been used in  the  con- 
struction of  very  few  of the most  widely used IQ tests, such as the Stan- 
ford-Binet and the Wechsler  scales. It so happens  that IQ  and  other cog- 
nitive  ability tests that  are constructed to meet  the  standard psychometric 
criteria of  satisfactory  reliability and practical predictive validity are typi- 
cally quite highly g loaded. And  they are valid for a wide range of predic- 
tive criteria precisely because they are highly g loaded. 

Spearman (1 927) said that  although we do  not know the  nature of g, we 
can describe the characteristics of the tests in which it is the most or  the 
least loaded and try to discern their different characteristics. But that 
cannot tell us  what g actually is beyond the  properties of the tests and  the 
operations of computing correlations and performing  a factor analysis. 
Comparing the g loadings of more  than 100 mental tests, Spearman  char- 
acterized those with the largest g loadings as  involving the  “eduction of re- 
lations and correlates,” or inductive and inductive reasoning, and as hav- 
ing  the quality  of “abstractness.” 
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But it is not  the tests  themselves, but g as a major source or cause of in- 
dividual differences in mental tests that is still not adequately understood, 
although we do know  now that  it involves more  than just  the  properties of 
the tests themselves, because it is correlated with individual differences in 
a  number of  wholly nonpsychometric variables (Jensen, 1987, 1993b). 

As for the tests  themselves, and for many of the real-life tasks and  de- 
mands on which performance is to some degree predictable from  the most 
g-loaded tests, it appears generally that g is associated with the relative de- 
gree of complexity of the tests’ or tasks’ cognitive demands.  It is well  known 
that test batteries that measure IQ are good predictors of educational 
achievement and occupational level (Jensen, 1993a). Perhaps less  well- 
known is the fact that g is the chief  “active ingredient”  in this predictive va- 
lidity more  than any of the specific knowledge and skills content of the 
tests. Ifg were  statistically removed from IQ  and scholastic aptitude tests, 
they  would have no practically  useful predictive validity. This is not to say 
that certain group factors (e.g., verbal, numerical, spatial, and memory) in 
these tests do not  enhance  the predictive validity, but  their effect is rela- 
tively  small compared  to g. 

The Method of Correlated  Vectors 

This is a  method  I have used to determine  the relative degrees to which g 
is involved  in the correlation of various mental tests  with nonpsychometric 
criteria-variables that have no necessary relationship to mental tests or 
factor analysis. IQ tests and the like  were never constructed to measure or 
predict these extrinsic variables, and the fact that IQ is found to be corre- 
lated with them is an informative phenomenon in its own right, suggesting 
that  the tests’ construct validity extends beyond the realm of psychological 
variables per se (Jensen, 1987; Jensen & Sinha, 1993). The key question 
posed by this finding is which aspects of the psychometric tests in terms of 
various factors or specific  skills or informational content is responsible for 
these “unintended” correlations? 

Two methods can be used to  answer  this question. The first is to include 
the nonpsychometric variable of interest in the factor analysis of the test 
battely and observe the factor or factors, if any, on which it is loaded  and 
the relative sizes  of its loadings on the different factors. This  method  re- 
quires that we have  all of the measurements (including  the  extraneous 
variable) and all of their intercorrelations based on  the same group of sub- 
jects. 

The second method, correlated vectors, consists  of obtaining  the column 
vector of,  say, the g factor loadings on each of the tests in a battery (e.g., 
the first column [g] in Table 3.1) and  correlating  the factor loadings with a 
parallel column vector consisting of each test’s correlation with the  exter- 
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nal variable. The size  of the correlation is an index of the relative degree 
(as compared with other tests in the battery) to which g (or any  given  fac- 
tor)  enters  into  the test’s correlation with the  external variable. The ad- 
vantage of the  correlated vectors method is that  the factor loadings and 
the tests’ correlations with the  external variable need  not be based on  one 
and  the same subject sample. It is often preferable to use factor loadings 
based on  the test battery’s standardization sample, which is usually larger 
and more  representative of the  general  population  than is the  data set of 
any single study. Hence data  reported in the  literature  that show various 
tests’ correlations with some external variable but were never intended to 
relate  the  external variable tog  or  other common factors in  the test battery 
can be used for the  correlated vectors  analysis even if a factor analysis  of 
the tests (not including the  external variable) has to be based on  a differ- 
ent subject sample, for example,  the  standardization sample of the Wech- 
sler Adult Intelligence Scale. 

An example of correlated vectors is shown in Fig. 3.5, based on  a study 
of the  habituation of the brain’s evoked electrical potentials (Schafer, 
1985). Subjects sit in a reclining chair in a  semidarkened  room and  hear  a 
series of 50 “clicks’’ at 2-second intervals, while the  amplitude of the 
brain’s change in electrical potential evoked by the click  is measured fi-om 
an electrode  attached to the vertex of the subject’s scalp and is recorded 
on an electroencephalograph. In normal subjects, the  amplitude of the 
evoked brain wave gradually decreases over the course of the  50 clicks. 
The rate of this decrease in amplitude is an index of the hubituution of the 
brain’s response to the auditory stimulus. In  a  group of 50 young adults 
with IQs ranging from 98 to 142, the  habituation  index  correlated  +.59 
with the WAIS Full  Scale IQ. But  what is the locus  of this correlation  in  the 
factor structure of the 1 1 WAIS subtests? We see in Fig. 3.5 that  the various 
subtests’ g loadings predict the subtest’s correlations with the evoked 
potential  habituation  index with a Pearson r = 0.80 and a  Spearman’s 
rank-order  correlation p = 0.77. Because the differing reliabilities of the 
various subtests affect both  their g loadings and  their correlations with the 
habituation  index, it is necessary  statistically to remove the effect  of corre- 
lated  errors in the variables’ g loadings and in their correlations with the 
habituation  index.  (The  procedure of correlated vectors and its statistical 
variations are explicated in detail in Jensen, 1998, Appendix B.) After the 
g factor was statistically partialled out of the 11 subtests, none of them 
showed a significantly non-zero correlation with the  habituation  index; g 
was the sole factor responsible for the  correlation between the WAIS IQ 
and  the  habituation of the evoked potential. 

The same kind of correlated vectors  analysis  as illustrated earlier has 
been used to determine whether a  number of different genetic, chro- 
nometric, anatomic, and physiological variables are  related  to the g load- 
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FIG. 3.5. Scatter diagram showing the Pearson correlation (r) and  the 
Spearman  rank-order correlation (p) between the correlations of each of 
the 11 subtests  of the Wechsler  Adult Intelligence Scale  with the evoked po- 
tential (EP) Habituation  Index  (on  the vertical  axis) and  the subtests' load- 
ings on  the g factor. The subtests are V-Vocabulary,  PA-Picture Arrange- 
ment, S-Similarities, I-Information,  C-Comprehension, BD-Block 
Designs,  OA-Object  Assembly,  PC-Picture Completion, Cod-Coding, 
D-Digit Span. From Jensen (1998) with permission of Praeger. 

ings in different batteries of mental tests, including the Wechsler scales. 
These  are listed below,  with the typical vector correlations shown in paren- 
theses. Details of these studies are provided elsewhere (Jensen, 1998, 
chaps. 6-8). 

Assortative  mating correlation between spouses' test scores (.95). 
The genetic heritability of test  scores (.70). 
Inbreeding  depression  of test scores in offspring of cousin matings (.80). 
Heterosis-outbreeding elevation of test  scores in offspring of interra- 
cial mating ( 5 0 ) .  
Reaction  time (RT) on various elementary cognitive tasks (ECTs) (.80). 
Intraindividual variubility  in RT on ECTs (.75). 
Head size as a  correlated proxy for brain size (.65). 
Brain evoked  potentials: habituation of their  amplitude (.80). 
Brain evoked  potentials: complexity of their waveform (.95). 
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0 Bruin intrucellula,r pH level;  lower  acidity -+ higher g (.63). 
0 Cortical glucose  metabolic ra,te during  mental activity (-.79). 

It is a fairly certain inference that g is also mainly responsible for the 
simple correlation between  scores on highly g loaded tests,  such  as stan- 
dard IQ tests, and a  number of other  brain variables: brain volume meas- 
ured in  vivo by magnetic resonance imaging (MRI); brain wave (EEG) co- 
herence; event related desynchronization of brain waves, and nerve 
conduction velocity in a  brain tract from the  retina to the visual cortex 
(Jensen, 199313, 1997, 1998). There  are also many  physical variables that 
have less  clearly brain-related correlations with IQ, such as stature, myo- 
pia, body and facial  symmetry, blood chemistry, and  other  odd physical 
traits that somehow became enmeshed with the  more  direct  neural  and 
biochemical causes  of individual differences in mental abilities in the 
course of human evolution or in ontogenetic  development  (Jensen & 
Sinha,  1993). 

The functional basis of how and why all these physical variables are cor- 
related with g is not yet known. The explanation for it in causal rather 
than merely correlational terms is now the major research task for the fur- 
ther  development ofg theory. Some of the as  yet inadequately investigated 
and unproved hypotheses that have been put  forth  to  explain  the  relation- 
ship of g to brain variables involve the total number of neurons, the  num- 
ber of connections between neurons  (dendritic  arborization), nerve con- 
duction velocity, the  degree of myelination of axons, the  number of glial 
cells, and brain chemistry (neurotransmitters, ionic balance, hormonal ef- 
fects, and so on). 

The g factor at  the level  of psychometrics is now  well established. Dis- 
covering its causal explanation, however,  obviously requires  that investiga- 
tion move fiom psychology and psychometrics to anatomy, physiology, 
and biochemistry (Deary, 2000). This is now made possible by the  modern 
technology of the brain sciences and will inevitably lead to the kind of 
reductionist neurophysiological explanation of g envisaged by its discov- 
erer, Spearman (1927) who urged  that  the final understanding of g “. . . 
must come fiom  the most profound  and  detailed  direct study  of the  hu- 
man  brain  in its purely physical and chemical aspects’’ (p. 403). 
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