Identifying the Mechanisms of the Mind



http://www.cambridge.org/9780521827447

This page intentionally left blank



Cognition and Intelligence

In 1957, Lee Cronbach called on the membership of the American Psy-
chological Association to bring together experimental and differential
approaches to the study of cognition. The field of intelligence research
is an example of a response to that call, and Cognition and Intelligence:
Identifying the Mechanisms of the Mind investigates the progress of this
research program in the literature of the past several decades. With
contributions from formative experts in the field, including Earl Hunt
and Robert Sternberg, this volume reviews the research on the study of
intelligence from diverse cognitive approaches, from the most bottom-
up to the most top-down. The authors present their findings on the
underlying cognitive aspects of intelligence based on their studies of
neuroscience, reaction time, artificial intelligence, problem solving,
metacognition, and development. The book summarizes and synthe-
sizes the literature reviewed and makes recommendations for the pur-
suit of future research in the field.

Robert ]. Sternberg is IBM Professor of Psychology and Education
at Yale, Director of the PACE Center at Yale, and 2003 President of
the American Psychological Association. He is the author of more
than 1,000 publications on topics related to cognition and intelligence
and has received over $18 million in grants for his research. He has
won numerous awards from professional associations and holds five
honorary doctorates.

Jean E. Pretz received her B.A. from Wittenberg University in Spring-
field, Ohio, and her M. A., M.Phil., and Ph.D. from Yale University. She
is Assistant Professor of Psychology at Illinois Wesleyan University in
Bloomington, Illinois. Her doctoral work examines the role of intuition
and expertise in practical problem solving from both an experimental
and a differential perspective. This project has received the American
Psychological Foundation/Council of Graduate Departments of Psy-
chology (APF/COGDOP) Graduate Research Scholarship Award, the
American Psychological Association Dissertation Research Award, as
well as a Yale University Dissertation Fellowship. Her research on
the role of implicit processes in insight problem solving received two
awards from the American Psychological Society Graduate Student
Caucus. She has also received a Fulbright fellowship to study the
psychology of religion in the former East Germany. Dr. Pretz has co-
authored a book on creativity titled, The Creativity Conundrum, with
Dr. Sternberg and Dr. James Kaufman.






Cognition and Intelligence

Identifying the Mechanisms of the Mind

Edited by

ROBERT J. STERNBERG
Yale University

JEAN E. PRETZ
Yale University

CAMBRIDGE

UNIVERSITY PRESS




CAMBRIDGE UNIVERSITY PRESS
Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, Sdo Paulo

Cambridge University Press

The Edinburgh Building, Cambridge CB2 2RU, UK

Published in the United States of America by Cambridge University Press, New York
www.cambridge.org

Information on this title: www.cambridge.org/9780521827447

© Cambridge University Press 2005

This publication is in copyright. Subject to statutory exception and to the provision of
relevant collective licensing agreements, no reproduction of any part may take place
without the written permission of Cambridge University Press.

First published in print format 2004

ISBN-13  978-0-511-26577-8  eBook (NetLibrary)
ISBN-10  0-511-26577-8  eBook (NetLibrary)

ISBN-13  978-0-521-82744-7  hardback
ISBN-10  0-521-82744-2  hardback

ISBN-13  978-0-521-53479-6  paperback
ISBN-10  0-521-53479-8  paperback

Cambridge University Press has no responsibility for the persistence or accuracy of urls
for external or third-party internet websites referred to in this publication, and does not
guarantee that any content on such websites is, or will remain, accurate or appropriate.


http://www.cambridge.org
http://www.cambridge.org/9780521827447

Contents

Preface page vii

1

Information Processing and Intelligence: Where We Are
and Where We Are Going 1
Earl Hunt

Mental Chronometry and the Unification of Differential
Psychology 26
Arthur R. Jensen

Reductionism versus Charting: Ways of Examining the Role
of Lower-Order Cognitive Processes in Intelligence 51
Lazar Stankov

Basic Information Processing and the Psychophysiology of
Intelligence 68
Aljoscha C. Neubauer and Andreas Fink

The Neural Bases of Intelligence: A Perspective Based on
Functional Neuroimaging 88
Sharlene D. Newman and Marcel Adam Just

The Role of Working Memory in Higher-Level Cognition:
Domain-Specific versus Domain-General Perspectives 104
David Z. Hambrick, Michael ]. Kane, and Randall W. Engle

Higher-Order Cognition and Intelligence 122
Edward Necka and Jarostaw Orzechowski

Ability Determinants of Individual Differences in Skilled
Performance 142
Phillip L. Ackerman

Complex Problem Solving and Intelligence: Empirical
Relation and Causal Direction 160
Dorit Wenke, Peter A. Frensch, and Joachim Funke



Vi

10

11

12

13

14

15

16

Contents

Intelligence as Smart Heuristics
Markus Raab and Gerd Gigerenzer

The Role of Transferable Knowledge in Intelligence
Susan M. Barnett and Stephen |. Ceci

Reasoning Abilities
David F. Lohman

Measuring Human Intelligence with Artificial Intelligence:
Adaptive Item Generation
Susan E. Embretson

Marrying Intelligence and Cognition: A Developmental View
Mike Anderson

From Description to Explanation in Cognitive Aging
Timothy A. Salthouse

Unifying the Field: Cognition and Intelligence
Jean E. Pretz and Robert |. Sternberg

Author Index
Subject Index

188
208

225

251
268
288

306

319
329



Preface

COGNITION AND INTELLIGENCE

How did the study of cognition and intelligence get started? Although
some psychologists in the nineteenth century were interested in cognitive
processing (e.g., Donders, 1868/ 1869), the connection between information
processing and intelligence seems first to have been explicitly drawn by
Charles Spearman (1923), the same individual known for initiating serious
psychometric theorizing about intelligence with his theory of the general
factor of intelligence (Spearman, 1927).

Spearman (1923) proposed what he believed to be three fundamental
qualitative principles of cognition. The first, apprehension of experience, is
what today might be called the encoding of stimuli (see Sternberg, 1977).
It involves perceiving the stimuli and their properties. The second princi-
ple, eduction of relations, is what today might be labeled inference. It is the
inferring of a relation between two or more concepts. The third principle,
eduction of correlates, is what today might be called application. It is the
application of an inferred rule to a new situation.

Spearman was not the only early psychologist interested in the relation-
ship between cognition and intelligence. Thorndike et al. (1926) proposed a
quite similar theory based on Thorndike’s theory of learning. According to
this theory, learned connections are what underlie individual differences in
intelligence. Some early researchers tried to integrate cognition and biology
in studying intelligence. For example, the Russian psychologist Alexander
Luria (1973, 1980) believed that the brain is a highly differentiated sys-
tem whose parts are responsible for different aspects of a unified whole.
In other words, separate cortical regions act together to produce thoughts
and actions of various kinds. Luria (1980) suggested that the brain com-
prises three main units. The first, a unit of arousal, contains the brain stem
and midbrain structures, including the medulla, reticular activating sys-
tem, pons, thalamus, and hypothalamus. The second unit of the brain is a
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sensori-input unit, which comprises the temporal, parietal, and occipital
lobes. The third unit is the frontal cortex, which is involved in organization
and planning. It comprises cortical structures anterior to the central sulcus.
Luria’s theory remains of interest to researchers even today (Naglieri &
Das, 1990, 1997).

In general, early approaches to cognition and intelligence came in fits
and starts. Lee Cronbach (1957) tried to revive interest in the cognitive
approach with an article on “the two disciplines of scientific psychology,”
and there were some fits and starts during the 1960s in an effort to revive
this approach. But systematic work was to wait until the 1970s.

Serious revival can probably be credited in large part to the work of Earl
Hunt (1978, 1980; Hunt, Frost, & Lunneborg, 1973; Hunt, Lunneborg, &
Lewis, 1975), who was the originator of what has come to be called the
cognitive-correlates approach to integrating the study of cognitive process-
ing with the study of intelligence (Pellegrino & Glaser, 1979). It examined
basic (sometimes called “lower order”) processes of intelligence.

The proximal goal of this research is to estimate parameters represent-
ing the durations of performance for information processing components
constituting experimental tasks commonly used in the laboratories of cog-
nitive psychologists. These parameters are then used to investigate the
extent to which cognitive components correlate across participants with
each other and with scores on psychometric measures commonly believed
to measure intelligence, such as the Raven Progressive Matrices tests.

For example, Hunt and his colleagues used the Posner and Mitchell
(1967) task as one of their cognitive tasks. This task requires individuals
to recognize whether two letters match physically or (in another variant
of the task) in name. The goal of such a task is to estimate the amount of
time a given participant takes to access lexical information — letter names —
in memory. The physical-match condition is included to subtract out (con-
trol for) sheer time to perceive the letters and respond to questions. The
difference between name and physical-match times thus provides the pa-
rameter estimate of interest for the task. Hunt and his colleagues found that
this parameter and similar parameters in other experimental tasks typically
correlate about —.3 with scores on psychometric tests of verbal ability.

The precise tasks used in such research have varied. The letter-matching
task has been a particularly popular one, as has been the short-term mem-
ory scanning task originally proposed by S. Sternberg (1969). Other re-
searchers have preferred simple and choice reaction time tasks (e.g., Jensen,
1979, 1982). Most such studies have been conducted with adults, but some
have been conducted developmentally with children of various ages (e.g.,
Keating & Bobbitt, 1978).

An alternative approach came to be called the cognitive-components ap-
proach (Pellegrino & Glaser, 1979). This approach focused on higher-order
components of intelligence. In this approach, participants are tested on
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their ability to perform tasks of the kinds actually found on standard psy-
chometric tests of mental abilities — for example, analogies, series com-
pletions, mental rotations, and syllogisms. Participants typically are timed
and response time is the principal dependent variable, with error rate and
pattern-of-response choices serving as further dependent variables. This
approach was suggested by Sternberg (1977; see also Royer, 1971).

The proximal goal in this research is, first, to formulate a model of in-
formation processing in performance on the types of tasks found in con-
ventional psychometric tests of intelligence. Second, it is to test the model
while estimating parameters for the model. Finally, it is to investigate the
extent to which these components correlate across participants with each
other and with scores on standard psychometric tests. Because the tasks
that are analyzed are usually taken directly from psychometric tests of in-
telligence or are very similar to such tasks, the major issue in this kind of
research is not whether there is any correlation at all between cognitive task
and psychometric test scores. Rather, the issue is one of isolating the locus
or loci of the correlations that are obtained. One seeks to discover what
components of information processing are the critical ones from the stand-
point of the theory of intelligence (Carroll, 1981; Pellegrino & Glaser, 1979,
1980, 1982; Royer, 1971; Sternberg, 1977, 1980, 1983; Sternberg & Gardner,
1983). An example of a component would be inference, which refers to the
conceiving of a relationship between two items (such as words, numbers,
or pictures).

Thus, Hunt and his successors focused on lower-order processes,
whereas Sternberg and his successors focused on higher-order processes.
A third approach focused on developmental processes. Jean Piaget (1952,
1972) was never very interested in individual differences. He viewed in-
telligence as arising from cognitive schemas, or structures that mature as
a function of the interaction of the organism with the environment. Piaget
(1926, 1928, 1952, 1972), like many other theorists of intelligence, recog-
nized the importance of adaptation to intelligence. Indeed, he believed
adaptation to be its most important principle. In adaptation, individu-
als learn from the environment and learn to address the changes in the
environment. Adjustment consists of two complementary processes: as-
similation and accommodation. Assimilation is the process of absorbing
new information and fitting it into an already existing cognitive structure
about what the world is like. The complementary process, accommodation,
involves forming a new cognitive structure in order to understand infor-
mation. In other words, if no existing cognitive structure seems adequate
to understand new information, a new cognitive structure must be formed
through the accommodation process.

The complementary processes of assimilation and accommodation,
taken together in an interaction, constitute what Piaget referred to as equi-
libration. Equilibration is the balancing of the two and it is through this
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balance that people either add to old schemas or form new ones. A schema,
for Piaget, is a mental image or action pattern. It is essentially a way of
organizing sensory information. For example, we have schemas for go-
ing to the bank, riding a bicycle, eating a meal, visiting a doctor’s office,
and the like. Equilibration unfolds through four stages of cognitive devel-
opment: sensori-motor, preoperational, concrete-operational, and formal-
operational.

Whereas Piaget emphasized primarily biological maturation in the de-
velopment of intelligence, other theorists interested in structures, such as
Vygotsky (1978), emphasized more the role of interactions of individuals
with the environment. Vygotsky suggested that basic to intelligence is inter-
nalization, which is the internal reconstruction of an external operation. The
basic notion is that we observe those in the social environment around us
acting in certain ways and we internalize their actions so that they become
a part of us.

Vygotsky also proposed the important notion of a zone of proximal devel-
opment, which refers to functions that have not yet matured but are in the
process of maturation. The basic idea is to look not only at developed abil-
ities but also at abilities that are developing. This zone is often measured
as the difference between performance before and after instruction. Thus,
instruction is given at the time of testing to measure the individual’s ability
to learn in the testing environment (Brown & French, 1979; Grigorenko &
Sternberg, 1998; Feuerstein, 1980). The research suggests that tests of the
zone of proximal development tap abilities not measured by conventional
tests.

By the 1980s, it was clear that there were many ways in which intel-
ligence could be examined through cognitive means. Many of these are
summarized in various handbooks of intelligence (Sternberg, 1982, 2000)
as well as an encyclopedia of intelligence (Sternberg, 1994). The field has
progressed by leaps and bounds since the work in the 1970s and 198o0s,
and the goal of this volume is to document that progress, concentrating
particularly on research that is ongoing or that has been conducted in the
last 10 years.

The organization of this book is in terms of the three main approaches
described here. Within these approaches, there are diverse points of view.
One approach looks at biological and basic processes. A second looks at
higher-order processes. And a third concentrates on developmental pro-
cesses. Students of intelligence will find all three approaches represented
here.

This book is written for upper division undergraduate students, grad-
uate students, career professionals, and anyone else who wishes to un-
derstand the current landscape with respect to the study of cognition and
intelligence. The book contains chapters by many of the leading contem-
porary figures in this field.
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Information Processing and Intelligence

Where We Are and Where We Are Going

Earl Hunt

INTRODUCTION

Intelligence tests are about one hundred years old. If you agree with Bor-
ing (1923) that intelligence is what the intelligence tests measure, then the
science of intelligence is one hundred years old. I will call this psychome-
trically defined intelligence. Empirically the study of psychometric intelli-
gence is a booming field, for it has led to a very large literature, impressive
technological developments, and coherent relationships among test scores
(Carroll, 1993). However, it has a weakness.

A purely psychometric approach to intelligence lets the technology of
measurement define the concept, rather than the concept defining an ap-
propriate measurement technology. Along with many others, I prefer a
more conceptual, less boring approach. The conceptual definition of intel-
ligence as individual variation in mental competence has a longer history.
In the sixteenth century the Spanish philosopher Juan Huarte de San Juan
(Huarte, 1575/1991) proposed a multifaceted theory of intelligence that
was not too far from today’s crystallized—fluid distinction. In the nineteenth
century, Galton (1883) used laboratory techniques for measuring individ-
ual differences in basic mental processes that are recognizable ancestors
of paradigms used in today’s laboratories. And for that matter, Binet, the
founder of modern testing, was not entirely atheoretic (Sternberg, 1990). All
interesting theories of intelligence try to go beyond test scores to connect
individual differences with a theory of how the mind works. Developing
such a theory is the province of cognitive psychology.

Nevertheless, for the first seventy or so years of the twentieth century
intelligence testing and cognitive psychology followed paths that, if not
orthogonal, were not closer than 60 degrees to each other. At mid-century
Cronbach (1957) called for a reorientation. Psychometricians and cognitive
psychologists agreed, but, like supertankers turning, it took about twenty
years to see either discipline change its course.
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Switching metaphors gloriously, it now appears that troop movements
in response to Cronbach’s trumpet call did not occur until the 1970s. At
that time my colleagues and I (Hunt, Frost, & Lunneborg, 1973; Hunt,
Lunneborg, & Lewis, 1975) conducted a series of studies in which we re-
lated the parameters of information processing theories, as measured by
a variety of paradigms, to performance on conventional paper and pen-
cil tests of verbal and mathematical reasoning. Foreshadowing much fu-
ture research, we found that in university student populations there was
a correlation in the —.3 range between the test scores and estimates of the
performance parameters of models of reaction time for the paradigms that
we used. The negative correlation is to be expected because the model
parameters were all estimates of how long it took a person to perform a
basic mental operation, such as looking up a word in a mental lexicon.
Somewhat later Arthur Jensen (1982) conducted similar studies in which
he related intelligence test scores to various parameters of choice reaction
times. Once again the raw correlations were on the order of —.3.

Sternberg (1977) responded to Cronbach’s call in a somewhat different
way. Analogy problems were known to be good markers of general intelli-
gence. Sternberg showed that the time required to solve analogies problems
could be fractionated into different stages, such as encoding, mapping from
one analogy to another, and verification of a hypothesized relation. In ret-
rospect, it seems fair to say that Hunt et al. and Jensen were attempting to
relate individual differences in information processing parameters to over-
all performance on the tests, while Sternberg was analyzing performance
within test items.

Atthat point the dam broke. There is now a huge literature on individual
differences in information processing. The topic is studied both for its own
sake and because of the relation between information processing measures
and scores on conventional intelligence tests, the psychometric definition
of intelligence. The success of the effort is shown by the fact that some of the
most active laboratories in the field are headed by people whose academic
histories are completely independent of the original protagonists. Articles
on individual differences in information processing appear regularly in all
the major journals and constitute staple items for several of them.

The publication of this volume provides an opportunity to look back
at what has been done and, with somewhat more hesitation, to attempt to
identify what more needs to be done. Like any large intellectual movement,
the study of information processing and intelligence has split into several
subareas. The most important ones are reviewed in individual chapters in
the current volume. I will try to take a larger view.

Cronbach wanted to establish a unity between two different ways of
looking at human behavior. To understand what success we have had, we
must know what these views are. They certainly are not the views that
were held when Cronbach wrote.
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Up to about 1957 behaviorism dominated human experimental psychol-
ogy. This view did not lend itself to being connected to the factor-analytic
view of differential psychologists. That connection had to wait for the re-
placement of behaviorism by information processing psychology. Mod-
ern cognitive psychology has now subsumed information processing, al-
though information processing remains an important part of the expanded
field. Similarly, differential psychology has moved well beyond the rigid
view of counting factors that was implied by the data processing technol-
ogy of half a century ago. To understand our present progress and future
challenges, we need to see how cognitive and differential psychology look
today.

THE CONCEPTS OF COGNITIVE PSYCHOLOGY

Theories and issues in cognitive psychology can be stated at the biolog-
ical, information processing, or representational levels (Hunt, 2002). To
understand the relation between cognitive psychology and theories of in-
telligence, we have to understand what these levels are.

At the biological level cognitive neuroscience attempts to associate in-
formation processing functions with brain mechanisms and processes. The
ideais that the brain provides the mind with a toolkit of neural mechanisms
tobe used to build the functions of the mind: the ability to control attention,
short- and long-term memory, maintenance of spatial orientation, and the
like. The relevant mechanisms are to be located by direct observation or
physiological intervention in the brain itself.

One level of abstraction higher, information processing psychology, a
subset of cognitive psychology, attempts to characterize the mental func-
tions themselves. To illustrate, memory is one of the most important as-
pects of human cognition; who we are is intimately tied to our imperfect
remembrances of past experience. In 1957, when Cronbach wrote, memory
was thought of as a unitary ability. By the 1970s the distinction between
short-term and long-term memory was a basic tenet of cognitive psychol-
ogy. Today we distinguish between at least half a dozen types of memories
and make a strong distinction between storage and retrieval processes.
The relation between the information processing and biological level is
illustrated by modern attempts to identify the brain structures and pro-
cesses that produce each of these different functional aspects of memory
(Schacter, 1996). Because information processing measures can and have
profitably been related to biological measures, information processing can
be used to develop a link between biological measures and intelligence test
scores.

Cognitive psychology is also concerned with higher levels of thinking,
such as how people understand causation, solve logical and mathemati-
cal problems, and choose between alternative courses of action and even
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how religious upbringing influences one’s understanding of evolutionary
principles. This is cognition at the representational level because the is-
sues to be studied are how people represent the world to themselves and
how these representations influence their behavior. Representational-level
thinking emerges from the brain, for the mind cannot have a thought that
the brain cannot support. However, it turns out that this is a conceptual
“bridge too far.” It is more useful to think of representational-level thinking
as emerging from the interaction between information processing capaci-
ties and the individual’s social environment.

Outside of psychology the term “thinking” almost always refers to
thought at the representational level. To a layperson psychological inves-
tigation of what eyewitnesses (or physics students) can be counted on to
remember seems immanently reasonable. A psychological investigation
of how people remember lists of arbitrary paired associates requires a bit
more justification. The layperson has a point; ultimately we are interested
in the thinking that reflects what people do, not how people behave in a
laboratory setting.

What might cognitive psychology tell us about representational-level
thinking? First, representational-level thinking emerges from the interac-
tion between information processing capacities and an individual’s social
and physical environment. Accordingly, some common themes, dictated
by information processing capacities, should apply to everyone. On the
other hand, understanding the individual requires an understanding of
both the format in which the information is held and the content of the
information itself. The content is obviously a product of the individual’s
life history.

To remove the discussion from complete abstraction, I offer two exam-
ples. My treatment will be brief. For further discussion of these topics, see
Hunt (2002, Chaps. 8-11).

The first, and clearest, is language. Modern linguistic theories assume
that all human languages follow rather restricted information processing
principles that govern, for instance, the permissible types of transforma-
tions from deep to surface structure. On the other hand, the natural lan-
guages are clearly different in many ways. The extent to which the form
and content of a natural language influence the thought of its speakers (the
Whorfian hypothesis) is a matter of debate. It would take us too far afield
to explore the topic here. My point is solely that this is a reasonable topic
for investigation, and one that could have considerable implications for
individual variations in mental competence.

The second example involves the names of common animals. Cognitive
psychologists interested in “thinking in general” have often investigated
how American college students represent animal names as a way of under-
standing how classes are represented, and understanding how properties
of classes and of individuals within a class influence both inductive and
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deductive reasoning. Lopez et al. (1997) developed models of knowledge
about animals held by American college students and by the Itzaj Maya,
a Central American group of forest dwellers. They found that the for-
mal mechanisms for holding information about animals were similar for
both groups. Animals were categorized by size, ferocity, certain biologi-
cal properties, and ecological niche. However the weight placed on dif-
ferent dimensions of similarity varied. (The Maya placed more weight
on ecological niche.) Furthermore, these differences led to understand-
able between-group differences in the conclusions that Americans and
Maya reached when presented with evidence about new properties of
animals, for example, that a certain animal was susceptible to an ex-
otic disease. You could not understand the thinking of the groups un-
less you had an understanding both of culture-general “data structure”
showing how information about animals was held and the culture-specific
information about what each group knew, and what they regarded as
important.

The sorts of issues I have just raised are ones that probably would not
have even occurred to a behaviorist. By 1970 information processing psy-
chology was a step beyond the behaviorist’s insistence on unitary mecha-
nisms of learning. As of the early twenty-first century the expansion had
gone beyond information processing to look at brain processes in one di-
rection and social-cultural correlates in another.

What had happened to theories of psychometric intelligence?

THEORIES OF PSYCHOMETRIC INTELLIGENCE

Psychometric intelligence has been buttressed by, and sometimes plagued
by, the success or failure of technology. In the nineteenth century Galton
attempted to account for individual differences in mental competence in
terms of what we would now call information processing measures. He
and his immediate successors failed, at least in their own eyes, because
they could not find high correlations between their information processing
tests and other indicators of intellectual competence, such as school grades.
Interestingly, the correlations they did find are in the range observed in
modern studies relating intelligence tests to information processing mea-
sures (Sternberg, 1990). The facts have not changed, but our definition of
success has!

When Binet and Simon introduced the modern intelligence test, perfor-
mance on such tests and in academics related to the test became the de facto
definition of intelligence. For instance, Spearman’s original argument for
a general factor in intelligence was based on the analysis of the grades of
English schoolchildren (Carroll, 1993). By 1957 when Cronbach sounded
his trumpet, discussions of theories of intelligence had devolved into a de-
bate over the factor structure of representative batteries of such tests: Do
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we have a single general factor (g) or are there multiple dimensions of in-
dividual differences within the constraints of what had come, by convention, to
be called “intelligence tests”?

The one-factor versus multifactor debate has very largely been settled.
Carroll (1993) showed that the best fit to the psychometric data is a three-
layer model, very close to the one developed by Cattell (1971) and Horn
(Horn, 1985; Horn & Noll, 1994). The Cattell-Horn model is based on the
idea that there are three broad abilities: fluid intelligence (g), crystallized
intelligence (g:) and spatial-visual intelligence (g,). Loosely speaking, ¢
is the ability to develop solutions to relatively novel problems, g. is the
ability to apply previously learned solution methods to the current prob-
lem, and g, is the ability to reason spatially. In most populations g. and
g are correlated, with the degree of correlation ranging anywhere from
.5 to nearly 1.0. However, g, tends to stand further apart, having cor-
relations generally in the .4 to .5 range, or even lower, with ¢. and g
measures.

Because g. and ¢ are correlated, and often highly correlated, a number
of authors (most notably Jensen, 1998; but see also Gottfredson, 1997) have
argued that they are all manifestations of a single underlying construct,
general intelligence (g). The argument is usually accompanied by a codicil
in which it is stated that ¢r and g are virtually identical, a point that is
questioned immediately below.

The correlation between g. and g s could arise in two different ways. One,
of course, is that something called general intelligence exists, and that tests
of ¢ and g. are different manifestations of the same thing. The alternative
is a sort of investment theory, first maintained by Cattell (1971), in which
people invest their fluid intelligence in different learning experiences, and
thus acquire g.. A less-than-perfect correlation would be expected because
different people, with identical g capabilities, might have different expe-
riences and thus would acquire different levels of g..

Detterman and Daniel (1989), and since them several other authors in
independent studies (Abad et al., 2003; Deary et al., 1996; Hunt, 1995b),
discovered a fact that is important for this debate. Correlations between
different intelligence tests are higher in populations of generally lower in-
tellectual competence. With the exceptions of a few special syndromes (e.g.,
Turner’s syndrome cases, where there is a selective loss of spatial-visual
ability), correlations between test scores of mentally retarded individuals
are quite high. By contrast, a great deal of differentiation of ability is seen
in examinations of people whose ability is relatively high overall. Statisti-
cally, at low levels of ability a wide variety of tests load on a general factor,
while at high levels of ability there is a pronounced g.-g differentiation.
Going still further, we would expect that people whose educational and
life experiences differ (e.g., college students who pursue different majors,
adults following different professions) would show distinctions within the
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g. field, depending upon precisely what aspects of previously acquired
knowledge and problem-solving methods are being evaluated.

Today’s definition of psychometric intelligence features (a) a strong gen-
eral intelligence factor for the lower ranges of ability in the population, with
a possible distinction between ¢ and g and (b) differentiation along the
gf—8c lines at higher levels of ability.

This theory is clearly well amplified beyond theories of intelligence circa
1957 and even circa 1975. The amplifications are very important for an
attempt to unite the concepts of cognitive psychology to the concepts of
intelligence theory. Three points stand out.

The first point is that the population matters. Information processing
measures that depend upon fairly mechanistic performance, such as well-
practiced reaction time measures or measures of perceptual speed, would
be expected to have their greatest effect in populations where g is an im-
portant variable, because these measures presumably tap neural efficiency
properties that apply to virtually all cognition. On the other hand, as spe-
cialized performance becomes more important, basic information process-
ing capacity may be less important than the knowledge a person has and
the strategies by which a person utilizes his or her capacity. Therefore corre-
lations between simple information processing measures and intelligence
test scores should increase when the sample is drawn from a population
of lower general mental ability. Indeed, that is what Detterman and Daniel
(1989) found.

The second point is that the test matters, especially when dealing with
populations of average and above-average abilities. This caution is partic-
ularly important when intelligence theorists try to go outside of test scores
to relate intelligence, as defined by a test, to the broader definition of in-
telligence defined by individual differences in competence in socially im-
portant areas. Much of the evidence for a connection between test scores
and indices of success is drawn from studies using either the Wechsler
Adult Intelligence Scale (WAIS), the Armed Services Vocational Aptitude
Battery (ASVAB), or the Scholastic Assessment Test (SAT). The conclusion
is usually that “general intelligence matters.” See, for instance, discussions
by Gottfredson (1997) and Herrnstein and Murray (1994). However, in the
populations for which they were intended these tests load on crystallized
intelligence (g.), not g or ¢ (Horn, 1985; Roberts et al., 2000). The impor-
tance of this distinction for the debate over whether intelligence counts
“in the real world” is obvious. The importance of the distinction for the
relation between cognitive psychology and the study of intelligence will
be discussed later, when we look to the future of the relationship.

The third point has to do with the recurrent debate over whether intelli-
gence is inherited. Present findings, based upon many studies of adoption
and pedigree, show clearly that within the variety of environments that oc-
cur in the developed industrial societies, intelligence test scores behave as
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if they have heritability coefficients in the .5 to .8 range. Sadly, that convo-
luted sentence is necessary. Were studies to be conducted in societies with
greater social heterogeneity (e.g., societies in which some groups are close
to starvation or where some children’s educations have been disrupted
by war) or in societies with less genetic heterogeneity, we would expect
the heritability coefficient to go down. What the present studies clearly do
show is that under the conditions that apply to well over half the world,
genetics does matter.

Tracing the information processing—test score link and tracing the ge-
netic composition—test score link are both reductionist enterprises. Obvi-
ously no one inherits a test score in the same sense that a person inherits eye
color. However, one might inherit information processing capabilities that
would then, in appropriate environments, predispose a person to have a
particular test score. Discouragingly, though, there has been relatively little
exploration of this link.

Most attempts to respond to Cronbach’s call have accepted the psycho-
metric definition of intelligence. However, there are three major exceptions
to this trend. Gardner (1983; Gardner, Kornhaber, & Wake, 1996) has ar-
gued for a much broader view. Gardner includes under intelligence such
topics as individual differences in musical, social, and physical (motor
control) skills. Sternberg and his colleagues in many writings (Sternberg,
1988, 1996; Sternberg et al., 2000) have been somewhat less catholic. They
argue that conventional tests tap skills required in academic settings but
fail to reflect individual differences in creativity (creative intelligence) and
cognitive competence in everyday, nonacademic settings (practical intelli-
gence). Goleman (1995) has argued for the existence of emotional intelli-
gence, which he defines both as self-awareness of, and control over, one’s
own emotional reactions and an ability to recognize and react to other
people’s emotional state.

These movements have stricken a chord with a public that is somewhat
wary of the idea that it is possible to evaluate a person’s mental compe-
tence using a test that takes less than three hours to complete. A complete
analysis of all the ramifications of these expansions of the “intelligence is
what the tests measure” view is beyond the scope of this chapter. A few
words are in order about how these expansions of the term “intelligence”
might influence attempts to understand intelligence in terms of variations
in individual information processing capacities.

Plato is supposed to have advised that in attempting to understand
nature we should carve it at its joints. This is usually taken to mean that
when we define a field of study, that field should be constrained along
some recognizable lines. More formally, if x, y, and z are measurements of
behaviors that are within a specific field (e.g., intelligence), then x should
be sensitive to perturbations in y and z, and similarly for all other pairings.
At the same time, x, y, and z should be relatively insensitive to, or should be
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responsive in the same way, to perturbations in a fourth variable, w, that is
defined to be outside the field. Note that this implies that measurements of
w, x, Y, and z exist. Philosophy may be able to exist without measurement
but science cannot.

As discussed later, we have a rather good idea of what information pro-
cessing capacities are related to cognitive competence. We are also well on
the way to identifying the brain structures that provide these capacities.
Similarly, we are also well on the way to understanding the brain struc-
tures that underlie emotional responses (LeDoux, 2002). Most importantly,
we know that the brain structures underlying cognition and emotion are
not identical. This suggests that it might be a good idea to make a fairly
strong distinction between individual differences in emotional sensitiv-
ity and individual differences in more “cold-blooded” cognitive skills. Of
course, this conclusion mirrors the long-time practice in psychometrics,
where a distinction is drawn between intelligence and personality tests.

Goleman’s emotional intelligence and several of Gardner’s multiple in-
telligences seem to fall more in the personality than the intelligence realm.
This conclusion in no way diminishes the importance of studying these
variables or of studying the interaction between traits identified in the
personality and intelligence realms. It is a good idea to remember that per-
sonality and cognitive competence may well be two separate systems of
individual variation.

Sternberg’s expansion of intelligence, on the other hand, does retain a
distinctly cognitive flavor. The measures that Sternberg and his colleagues
have designed measure people’s ability to identify culturally acceptable so-
lutions to problems that (a) lie outside of problems that can be addressed
using information that is typically taught in schools and (b) do not ask
examinees to deal with virtually content-free problems in pattern induc-
tion. Sternberg et al. make two claims. They contend that performance on
practical and creative problems should be considered in the definition of in-
telligence and they further contend that they have developed appropriate
tests of creative and practical intelligence.

The first contention is a matter of definition, and I suspect that virtually
no one would disagree. See, for instance, Gottfredson’s (1997) discussion
of the practicality of general intelligence, as measured by conventional
tests.

The second contention is an empirical claim about tests that exist at a
particular point in time. There are two ways that this contention could be
rejected. One would be to show that all reliable variance in cognitive per-
formance outside the testing arena is related to variance on conventional
test scores. This is patently not true. The strongest advocates for the use of
tests of general intelligence in personnel selection claim, at most, a corre-
lation of .5 between test performance and job performance (Hunt, 1995a;
Schmidt and Hunter, 1998).



10 Earl Hunt

Panel A
Cognitive Test Scores Information Processing
Performance Measures
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Cognitive Performance Information Processing Test Scores
Measures
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Cognitive Performance Test Scores Information Processing
Measures
FIGURE 1. Possible configurations of shared variation between information process-
ing measures, extra-laboratory performance, and conventional intelligence tests.
The configuration in Panel A must exist, but it could be produced by the configu-
rations in either Panels B or C.

Another way to reject the contention would be to show that all variation
in cognitive performance not associated with test scores is associated with
properties of the situation in which performance is assessed, rather than
properties of the person being assessed. While this is not impossible in
principle, at present no such demonstration exists.

Given that the contention cannot be rejected, can it be affirmed? This
issue has to be settled on a case-by-case basis. See, for instance, the ex-
change between Brody (2003) and Sternberg (2003). The essence of that



Information Processing and Intelligence 11

exchange was that Brody showed that a particular set of results that had
been put forward as evidence for measured cognitive performance “out-
side of general intelligence” had a variety of defects and could not be
used as proof that the contention was correct. Sternberg, in his reply, re-
ferred to as-yet-unpublished data that he hoped would provide proof that
measurements exist that both relate to cognitive performance outside the
laboratory and are not part of conventional test theory. When these data are
published they will, of course, be critiqued and may or may not be accepted
as evidence that practical intelligence has been identified and measured. If
accepted, the issue will be settled. If not, we can always go on to the next
measurement.

This controversy has implications for discussions of the role of individ-
ual differences in information processing as indicators of intelligence, in
the broad sense of intellectual competence, rather than in the narrower
sense of predicting test scores. The possibilities are shown in Figure 1.
Panel A of Figure 1 shows what we know: that intelligence test scores are
reliably but less than perfectly related to individual differences in informa-
tion processing and that cognitive performance, outside of the laboratory,
is reliably but less than perfectly related to test scores. Panel B of Figure 1
shows one interpretation of these facts; that individual differences in infor-
mation processing provide a substantial part of the link between test scores
and extra-laboratory performance. Panel C shows another, less interesting
possibility. The variance in test scores that is related to general cognitive
performance (the whole point of having the test) might be separate from
the variance related to individual differences in information processing
ability.

We can then ask where practical intelligence, or any other personal prop-
erty related to cognitive performance, would fit in. Some possibilities are
shown in Figure 2. By definition, the practical intelligence—performance

[ R R T

Information Conventional Information New Information
processing  intelligence processing intelligence processing
measures A  tests measures B tests measures C

FIGURE 2. Possible configurations of information processing measures, conven-
tional intelligence tests, and hypothetical new measures, such as practical intel-
ligence. Based on our present knowledge, either information processing measures
in set A or set B or both must exist. There is no information concerning the existence
or nonexistence of set C.
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link has to be outside the conventional intelligence-performance link. In-
dividual differences in information processing might be related only to test
scores, or there might be two sets of information processing measures, one
set related to intelligence as conventionally assessed and the other set re-
lated to the new measures. At present we do not have any information that
discriminates between these and other configurations of shared variation.
Let us now move from theory to discussion of some specific findings.

EARLY ATTEMPTS: RELATING THE PARAMETERS OF INFORMATION
PROCESSING MODELS TO SPECIFIC DIMENSIONS OF
PSYCHOMETRIC INTELLIGENCE

Information processing models specify a process by which some action is
taken (e.g., identification of a word or decision to choose one of several
responses) and then specify methods for estimating parameters of the
process. One way to develop a theory of individual differences in infor-
mation processing is to determine which parameters do (or do not) show
substantial individual differences and to relate these individual differences
to other properties of the individual, including intelligence test scores.

To illustrate, one of the basic processes in reading a phonetic lan-
guage is associating names with arbitrary symbols, such as associating
the word form CAT with the English word “Cat.” Posner et al. (1969) de-
veloped a technique for measuring this process. Respondents were asked
to determine, as quickly as possible, whether two symbols had identical
names. Suppose that the two symbols are “A..A.” These symbols are phys-
ically identical (PI). Therefore they must have the same name, whatever
that name is. Suppose, though, that the symbols are “A..a.” These symbols
are name identical (NI) but not physically identical. Posner et al. found
that college students took, on the average, about 8o milliseconds more to
respond to an NI than to a PI pair. This came to be called the NI-PI dif-
ference score. It was taken as a measure of the time it takes to associate a
visual symbol with a name. Reading, an important cognitive skill, is based
on the ability to make such associations.

Hunt and his colleagues (Hunt, Frost, & Lunneborg, 1973; Hunt,
Lunneborg, & Lewis, 1975) extended this finding, showing that college
students with high scores on a test of verbal comprehension (similar to
the SAT verbal scale) showed a difference of only 60 milliseconds between
name and physical identification, while students with low verbal com-
prehension scores showed a difference of about 100 milliseconds. More
generally, the NI-PI score had a correlation of about —.3 with verbal com-
prehension test scores in a college population. Speculatively, this could
indicate that part of the variation in very complex verbal tasks, such as
those that make up psychometric tests of verbal ability, is due to the speed
with which people access their mental lexicon.
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Subsequent studies tested this hypothesis more directly. For instance,
Palmer et al. (1985), once again using a college population, showed that
there was a correlation of —.4 between scores on reading tests and the time
required to distinguish between common English words such as CART
and pronounceable nonwords such as TARC.

Access to the lexicon is an important part of verbal comprehension, but
it is not all of it. In addition to retrieving word meanings, the comprehen-
der must combine them to make sense out of sentences and paragraphs.
This requires the manipulation of information in working memory. Re-
search on “span tasks,” in which people are asked to comprehend sen-
tences while simultaneously holding unrelated information in memory,
has shown that individual differences in the ability to hold information in
immediate memory are also very clearly associated with performance on
more complicated linguistic tasks, such as sentence and paragraph com-
prehension. See Daneman and Merikle (1996) for a review of much of this
research, and MacDonald, Just, and Carpenter (1992) for a particularly
good example of how individual differences in working memory can be
related to the act of parsing a sentence.

Verbal comprehension depends upon a number of controlled, conscious
processes, such as recognizing the name of a word form or gaining the
gist of a sentence. These processes, in turn, rely partly upon automatic
processes for arranging information in a timely fashion and for resolving
ambiguities. One of the most important of the automatic processes is the
spread of activation from a recognized item to other items that are asso-
ciated with it either semantically or statistically. One of the questions we
can ask, then, is whether both automatic and controlled processes exhibit
substantial individual differences.

Apparently they do not. To see this, let us look again at the Palmer et al.
(1985) paper, which indicated that there are substantial individual differ-
ences in lexical identification, as explained above. Palmer et al. also evalu-
ated an automatic phenomenon called priming, in which the exposure of
a visual word facilitates the recognition of semantically related words. For
instance, the word DOCTOR is recognized more quickly if it is preceded
by NURSE than if it is preceded by BUTTER. Although the existence of
priming is not in question — indeed it was demonstrated in the Palmer
et al. study — priming does not display large individual differences.

This observation is interesting in light of later research, which has led
to the conclusion that human reasoning can be divided into two broad
systems: automatic processes that proceed rapidly, on the basis of statis-
tical associations between and temporal contiguity of stimuli, and con-
trolled processes that proceed much more slowly and are under conscious
control (Hunt, 2002; Sloman, 1996). This distinction has largely been ig-
nored in studies of the relation between information processing measures
and intelligence. However, it may explain an important phenomenon; the



14 Earl Hunt

relation between intelligence measures and expertise in a particular field.
Ackerman (Chap. 8 in this volume) points out that intelligence tests are
generally not good predictors of individual differences in performance af-
ter asymptotic performance levels have been reached. This may be true
because experts, who have benefited from extensive practice, rely more on
automated than controlled processing.

The research on verbal comprehension was not an attempt to “explain
intelligence.” It was an attempt to relate an important and definable dimen-
sion of human variability, the ability to comprehend language, to individ-
ual differences in the information processing components that underlie
performance along this dimension. There was no claim that individual dif-
ferences in information processing account for all verbal comprehension;
obviously environmental variables (predominantly schooling) will be im-
portant. Nevertheless, understanding individual differences in those infor-
mation processing tasks that are part of any act of verbal comprehension
is an important goal.

Similar attempts have been made to fractionate visual reasoning into its
information processing components. Space does not permit a review of this
interesting line of research. Suffice it to say that three correlated abilities
have been identified. They are the ability to (1) imagine movement or dis-
tortion of an object, (2) isolate a figure against a complicated background,
and (3) deal with an actual perception of motion. It is also of interest that
other research, not primarily aimed at individual differences, has shown
that working memory for spatial-visual tasks is somewhat different from
working memory for verbal tasks (Logie, 1995). This finding is consistent
with brain imaging studies that identified different regions for verbal and
spatial-visual working memories (Smith & Jonides, 1997).

SPEED OF INFORMATION PROCESSING AND
GENERAL INTELLIGENCE

The research just described represents an attempt to connect information
processing models of specific areas of cognition to demonstrated individ-
ual differences in those areas. There has also been considerable progress
in connecting information processing measures to indices of general intel-
ligence (g) and fluid intelligence (g¢r). Indeed these terms are often used
synonymously, although, as noted above, there is question about whether
this is appropriate, especially at higher levels of general competence.
Tests of general intelligence appear to evaluate several cognitive abilities
at once. This is obvious for tests made up of a battery of subtests, such as
the Wechsler Adult Intelligence Scale. It is equally true, albeit less explicitly
obvious, for tests that appear to consist of homogeneous items, such as a
progressive matrix test or numerical analogies tests. In this case the items



Information Processing and Intelligence 15

themselves are complicated, draw on different information processing ca-
pacities (e.g., short-term memory or the ability to abstract features from a
perceptual display), and are often amenable to several strategies. See, for
instance, the analysis of different types of test items by Carpenter, Just, and
Shell (1990), Embretson (Chap. 13, this volume), Hunt (1974), and Sternberg
(1977). If individual differences in mental competence, that is, intelligence
in the conceptual sense, depends upon the ability to deploy a variety of in-
formation processing capacities, attempts to relate intelligence to any one
of these capacities will have only limited success unless this capacity is
either pervasive throughout the nervous system or refers to a component
of information processing that is used in a wide variety of tasks.

Two candidate information processing capacities have been suggested.
One is simply neural processing speed. The argument is that the nervous
system is essentially an information transmission system, so therefore the
efficiency of the cabling should be reflected in the system’s performance
on virtually any task. Jensen (Chap. 2, this volume) has been a prominent
advocate of this proposition.

In his early work Jensen (1982) attempted to find a “pure” measure of
information processing speed. Hick (1952), and since then many others,
found that in a choice reaction time (CRT) task, when people are asked
to identify a stimulus as being one of a set of N familiar stimuli (e.g.,
identifying a number as being either 1, 5, or 7, or indicating that one of
N < 9 lamps has been lit) the time required to do so is a linear function
of the logarithm of the set size. This is interesting because it suggests an
extremely efficient process for searching long-term memory. The key mea-
sure is the slope of the function relating choice time to the logarithm of the
number of possible alternatives. Jensen took this parameter as a measure
of internal neural efficiency and, in a number of studies, related the slope
measure to scores on measures of general intelligence (g). There is indeed
a reliable correlation between the slope measure and measures of general
intelligence, but it is only —.17 (Jensen, 1998, p. 212). As in the case of the
NI-PI measure, a negative correlation is expected because latency is be-
ing related to intelligence, with long latencies associated with lower test
scores.

A closer examination of research related to CRT latency presents some
interesting results. The latency of a choice can be broken down into two
components, one (choice time) that is supposed to reflect the time required
to determine what response is appropriate and another (movement time)
that reflects the time required to make the response. To the extent that
choice is “cognitive” and movement is “motor,” one would expect intel-
ligence test scores to be related to choice time but not to movement time.
In practice, though, the results are highly varied. It appears that the choice
time—intelligence correlation is only slightly higher than the movement
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time—intelligence correlation. This suggests that the key variable is some
general property of the nervous system, such as neural efficiency, that is
involved in both choice and movement times. Therefore, more recently
Jensen (Chap. 2, this volume) has suggested that the overall decision time
or CRT, especially for choices involving several alternatives, may be the
most appropriate measure. When this is done the correlations can rise to
the .2—.4 range (in absolute magnitude).

There is a good argument for using the overall CRT latency measure.
Suppose that the observed latency (time to make a choice) is divided into
three components: the time required to make the decision, the time required
to make the response, and a random measurement error component whose
variance is independent of the other two processes. The more complex the
decision, the longer the time required to make it. Therefore the percent-
age of variance in the observed latency that might be expected to be due
to individual differences in cognition will be larger, relative to the mea-
surement error, for complex, time-consuming decisions than it will be for
simple decisions.

Jensen has also argued that the within individual variance in choice re-
action time reflects, in part, inconsistent neural processing. Therefore the
variance should be negatively related to general intelligence test scores.
While this is a reasonable argument, the evidence for it seems to be, as it
were, variable. It is also worth noting, though, that Jensen’s argument as-
sumes that estimates of the expected time to make a decision and estimates
of the variance of that time are independent. It has long been known that
an individual’s reaction times are not normally distributed. Some of the
models used to analyze reaction times assume distributions in which the
expectation and the variance are functions of the same underlying param-
eter (Luce, 1986; McGill, 1963). If these models are correct, then including
the variance as well as the mean as a predictor of an intelligence test score
simply increases the reliability of the predictor rather than sampling a dif-
ferent process.

Choice reaction time tasks have two undesirable characteristics. First,
it can take a large number of training trials before reaction times stabilize.
This may not be appreciated by researchers on individual differences, who
have often used far fewer training trials than is customary in research on
information processing models per se. Research by Ackerman and others
(see Chap. 8, this volume) on tasks very similar to the CRT task has shown
that the correlation between latencies and tests of general intelligence is
higher in the earlier stages of training than in the later ones. This suggests
that the correlations reported by Jensen, and by the many others who have
used his procedure, may have more to do with the participant’s speed at
figuring out how to deal with the apparatus (e.g., establishing a response
set) than with the efficiency of neural processing.
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The second undesirable property is reliability. As Jensen (Chap. 2, this
volume) points out, choice reaction latencies are highly reliable (v ~ .9)
within a single session. However, the correlation between individual re-
action times, taken in sessions as little as five days apart, falls to about
.6. The discrepancy between these two statistics indicates that the prob-
lem is not measurement error. Instead, the process being measured by
the CRT paradigm is itself somewhat variable over time. On the one
hand, this suggests that the correlation between intelligence test scores
(which are stable over a period of more than a year) and the “true,
consistent” component of choice reaction time is even higher than the
observed .2—.4. This is interesting on theoretical grounds. On practical
grounds, though, the day-to-day variability in reaction times is enough
to rule out the CRT paradigm as a replacement for intelligence tests in any
practical setting.

An alternative approach to measuring general processing speed is to
utilize a perceptual task that is less amenable to the examinee’s response
strategies. The inspection time paradigm (Nettlebeck, 1987) has been widely
used for this purpose. Two stimuli are presented for a brief, experimenter-
controlled time. They differ on a single physical dimension (e.g., two lines
of differentlength or two successive tones of different pitch). The observer’s
task is to detect which of the stimuli is longer or higher. The minimum ex-
posure time needed to make a reliable judgment is taken as a measure
of the observer’s internal processing speed. The initial results with this
measure were extremely promising, but appear to have been heavily in-
fluenced by the inclusion of extreme groups, such as combined analyses
of data from college students and mental retardates. A meta-analysis of
subsequent studies (Grudnik & Kranzler, 2001) has shown an uncorrected
correlation of about —.3 between inspection time and a variety of intelli-
gence test scores. (If one is willing to make various statistical assumptions
the “true score,” disregarding both unreliability of measurement and pos-
sible restriction in range of the population being tested, the correlation is
—.51.) Insofar as this author knows, there are little data concerning day-to-
day variability in the inspection time measure. Analyses of inspection time
in multivariate studies (e.g., Nettlebeck, 2001) indicate that this measure
loads on a general perceptual speed factor and, through it, on a general
intelligence factor.

On the whole, measures that we can reasonably regard as evaluations of
“mental speed” seem to account for 10 to 15% of the variance of scores on
intelligence tests, as measured in a typical study. If we are willing to make
various statistical corrections, especially for the restricted range of test
scores in any one study, the estimate rises to 25% of the variance. These cor-
rections depend upon assumptions about the relation of the measured dis-
tribution to the distribution in a hypothetical “general population,” and in
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particular, depend upon the assumption that scores on both the information
processing and intelligence variables are multivariate normally distributed
in the unmeasured general population. In fact, though, as was pointed out
earlier, the multivariate normal assumption is false. Intelligence test scores
become more differentiated as the general level of intelligence increases,
and the relation between intelligence test scores and information process-
ing measures increases as the general intelligence level falls.

Therefore the safest thing to say is that (1) the 10-15% figure holds
for most young adult populations of average to slightly above average
general ability, (2) the figure would certainly rise if the entire range of
the population were to be sampled, and (3) the figure is probably higher
for populations in the lower IQ ranges and lower in populations with
exceptionally high general intelligence scores.

A straightforward interpretation of these results is that some people
simply have brains that work faster than other people. This hypothesis has
received striking, albeit indirect, support from observations of neural pro-
cessing as people are asked to solve problems. In the late 1980s brain imag-
ing techniques were developed that make it possible to measure metabolic
activity in various areas of the brain as a person attempts to attack a cog-
nitive problem. This work, which is discussed later by Neubauer and Fink
(Chap. 4) and by Newman and Just (Chap. 5), has shown that better prob-
lem solvers and more intelligent individuals, as indicated by test scores,
show less metabolic activity than do individuals with poorer problem-
solving abilities. This could happen in two different ways. It could be that
the better problem solvers simply have more efficient neural systems. That
is, when faced with a problem, their brains perform more efficiently at a
fixed level of organization. Alternatively it could be that better problem
solvers have developed a better organization of brain systems, analogous to
smooth motion in motor systems, so that less neural processing is required
to achieve the same information processing result. At present there is no
evidence to indicate which of these hypotheses is correct. The distinction is
important because more efficient organization could be achieved by more
rapid learning (Garlick, 2002). At present, though, there is no evidence that
would discriminate between the performance and learning explanation for
the test score—processing speed correlation.

To close this section, two caveats are in order. One is about what we do
not know. The argument that neural efficiency and/or neural processing
speed accounts for the relation between general intelligence and informa-
tion processing measures of speediness implies that the new measures of
brain metabolism account for the same portion of variance in test scores as
do information processing measures, such as the CRT and inspection time
measures. Put another way, the partial correlation between test scores and
metabolic measures should vanish once behavioral measures of speediness
are held constant. This hypothesis has not yet been tested.
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The second caveat concerns a misinterpretation of the speediness—test
score relation. Several critics of neural speediness as an explanation for
intelligence have pointed out that it is not always good to be fast. Indeed,
while rapid responding is valued in some cultures, such as questioning the
speaker at a graduate colloquium or responding to a challenge in a debate,
in other cultures rapid responding is seen as a sign of immaturity and
foolhardiness. This objection to speed measures misses the point. What the
speediness studies have shown is that individuals with higher test scores
have the ability to make simple decisions more rapidly than individuals
with low test scores. The extent to which a person would exercise that
ability in a particular situation is an entirely different issue. Indeed, the
ability to inhibit a response, when appropriate, turns out to be an important
part of intelligence. We now turn to this issue.

LOOKING FOR A PERVASIVE FUNCTION: WORKING MEMORY

The research on reaction time and inspection time measures was motivated
by the idea that a pervasive neural process might explain intelligence. An
alternative approach is to examine individual differences in an information
processing function and ultimately a brain function that is required by
practically all intellectual acts. Consider the following analogy. Suppose
that we observed two carpenters, one of whom was markedly quicker
and more accurate in building furniture. It could be that the more adept
carpenter had quicker, more accurate motor movements. However, it could
be that the more adept carpenter had a larger, better organized workbench.
Or both explanations could be true. Keeping this analogy in mind may help
the reader follow the argument in the rest of this section.

Modern theories of cognition emphasize working memory as a perva-
sive component of reasoning. As the name suggests, working memory
refers to the ability to keep in mind different aspects of a currently ac-
tive problem, for example, a driver’s being aware that there is a vehicle
to the left rear, where it cannot be seen. Much of the evidence for the
importance of working memory rests upon tasks that demand control of
attention, either to switch back and forth from one stream of informa-
tion to another (think of a person listening to the radio while driving) or
that require people to perform one task while ignoring irrelevant stimuli
(think of carrying on a conversation at a cocktail party) (Baddely, 1986,
1992).

Working memory is required for many tasks that we normally think of
as displaying intelligence. Spearman’s (1923) definition of general intel-
ligence stressed the importance of seeing common patterns and relations
in multiple cases. If a person is going to compare two or more pieces of
information, it must be possible to keep them both in mind at the same
time.
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Given the importance of working memory in general theories of cogni-
tion, it is natural to investigate the relationship between measures of work-
ing memory and psychometric intelligence test scores. One of the earliest
modern studies of information processing and intelligence reported a cor-
relation between the speed of scanning information in immediate memory
and scores on tests of mathematical ability (Hunt et al., 1973). Hunt (1980)
also noted that groups of individuals of widely varying mental capacity
differed markedly in the speed with which they scanned short-term mem-
ory. Unfortunately these findings were not developed at the time.

Kyllonen and his colleagues (Kyllonen & Christal, 1990; Kyllonen &
Stephens, 1990) deserve credit for the first substantial findings tying work-
ing memory capacity to abstract reasoning. They showed that individual
variation on tests of abstract reasoning could almost entirely be accounted
for, statistically, by measures of working memory capacity. Subsequent re-
search tied working memory capacity to models of performance on the
well-known Raven’s Progressive Matrices test (Carpenter et al., 1990) and
to models of sentence comprehension (MacDonald et al., 1992).

Engle and his colleagues have carried this research forward in an im-
portant way by more precisely defining working memory (Hambrick,
Kane, & Engle, Chap. 6, this volume). The gist of their findings is that
the ability to keep several pieces of information in mind at once depends
upon the ability to suppress responding to those aspects of a situation that
are irrelevant to the problem at hand. It is worth noting that this finding is
consistent with findings on attention deficit disorder, a syndrome in which
schoolchildren (and in some cases adults) are unable to function well be-
cause they cannot concentrate their attention in the face of distractions.

Unlike response time measures, working memory measures do not
show much fluctuation over time, at least when the measurement situ-
ation is “normal.”

So, does whatever underlies intelligence test scores depend upon work-
ing memory capacity or general processing speed? The answer appears to
be that both are important. Schretlen et al. (2000), in a well-designed study
involving participants varying across the entire adult range, found that
combined measures of speed, working memory, and frontal lobe volume
could account for almost 60% of the variance in scores on a measure of
fluid intelligence.

PROSPECTUS

Cognitive psychologists may have taken twenty years to respond to
Cronbach’s call to study individual differences, but once the response
movement began it met with success. The research reviewed here is the tip
of a very large iceberg of research papers relating individual differences
in information processing to measures of general intellectual functioning,



Information Processing and Intelligence 21

such as intelligence test scores. It is now clear that individual differences
in information processing are responsible for a substantial part, but not all,
of general mental competence. The relationship is particularly strong for
measures of abstract, analytical reasoning. Lohman in Chapter 12 points
out correctly that this is an important function, but that understanding an-
alytic reasoning does not explain all human thought because a substantial
part of our mental power depends upon combining reasoning ability with
the possession of specific knowledge.

But where do we go from here? The answer to this question depends
upon which of the two research goals is meant. Is the goal of research
the reductionist one of understanding the link among brain mechanisms,
information processing, and intelligence, in the conceptual sense? Or is
it the expansionist goal of understanding the relation between individual
differences in cognition and success in the world outside of the laboratory?

Work toward the reductionist goal is well advanced. For instance, we
now know that structures in the dorsolateral prefrontal cortex are active
during tasks that involve working memory, which suggests strongly that
differences in the efficiency of this structure underlie some individual
differences in human reasoning capacity (Kane & Engle, 2002). We do
not know how the process by which the prefrontal cortex and other re-
lated structures achieve working memory functions, but that knowledge
will come. We are similarly aware of the structures involved in mem-
ory storage, spatial reasoning, and a variety of linguistic functions, but
we do not know how these structures work in an information processing
sense.

It is reasonable to expect that in the next fifty years there will be sub-
stantial advances in understanding how the brain produces differences
in information processing capacity. If we couple these advances with ad-
vances in molecular genetics, we are very likely to understand how nurture
makes its contribution to the product of nature and nurture that we call
intelligence, especially that part of intelligence that can be measured by
conventional tests.

What is much less clear, though, is how the study of information pro-
cessing is going to contribute to the expansionist goal of understanding
individual differences in cognitive performance in “real life.” Theories of
intelligence have, of late, tended to concentrate on measures of “general
intelligence” (cf. Jensen, 1998). In fact, the picture is more complicated. The
closest real picture for intelligence is the g.—g r—g, hierearchy. Furthermore
the tests that appear to be the highest correlates of performance in school
and the workplace are tests of crystallized intelligence, such as the SAT,
ASVAB, and WALIS, rather than tests of fluid intelligence. As was pointed
out earlier, these are tests of g., not g of ¢g. And what is g.? The ability to
apply previously acquired information and problem-solving methods to
the current problem. Knowledge counts.
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Whatis needed is a better understanding of how information processing
capacities are involved in the process of knowledge acquisition and use.
These studies need to go beyond studies of the application of knowledge
to include understanding of strategies of problem solving. This research
will inevitably involve understanding particular situations. It is going to
be difficult to draw general principles across applications. In spite of the
difficulty, though, the task must be done. Understanding what drives per-
formance on an intelligence test is not interesting in itself. It is interesting
only if the finding assists us in understanding variations in cognitive com-
petence in life.
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Mental Chronometry and the Unification
of Differential Psychology

Arthur R. Jensen

Mental chronometry is the measurement of cognitive speed. It is the actual
time taken to process information of different types and degrees of com-
plexity. The basic measurements are an individual’s response time (RT) to
a visual or auditory stimulus that calls for a particular response, choice, or
decision.

Since at least the time of Sir Francis Galton (1822-1911), the father of
differential psychology, it has been hypothesized by him and many others
that mental speed is a major aspect of general intelligence. What we now
know for sure is that RT can be a highly precise, reliable, and sensitive
measure of individual differences. Its relationship to other psychological
and ecological variables, however, is a complex affair just recently being
explored.

Research on RT has a venerable history. Not only was it the earliest mea-
surement technique used in empirical psychology, but also its scientific use
as a measure of individual differences preceded the beginning of experi-
mental psychology by at least half a century. The first published research
on RT appeared in astronomy journals. Time, as measured by the Earth’s
rotation with reference to a star’s moment of transit across a hairline in the
lens of a telescope, had to be measured as accurately as possible. In 1796
it was accidentally discovered by the Astronomer Royal at the Greenwich
Observatory that astronomers showed individual differences in RT to the
star’s transit across the hairline. So it was decided that each astronomer’s
RT had to be “corrected” for any given individual’s “personal equation,”
that is, the deviation of the individual’s mean RT from the mean RT based
on the observations made by a number of astronomers. Before then, it had
been assumed that such simple RT was virtually instantaneous. RT was
later taken up as a basic tool in experimental psychology. Shortly there-
after, the measurement of individual differences in RT, along with other
measures of human capacities, became a subject of interest in its own right

26
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to Galton, who tested simple RT on thousands of people (Jensen, 1982b,
1994). Unfortunately, by the early 1900s the purely technical inadequa-
cies of this early work in mental chronometry caused the near demise of
this field of investigation, and subsequent developments in mental testing
were dominated for nearly a century by the psychometric model based
on the famous intelligence test devised by Alfred Binet in 1905. In recent
years, however, the premature abandonment of chronometric methods in
differential psychology has been rectified by a rapidly burgeoning research
literature in this field, particularly related to the nature of intelligence con-
ceived theoretically as the speed and efficiency of information processing
(Vernon, 1987).

This chapter explains the important differences between conventional
psychometric measurement and mental chronometry and points out the
particular advantages of chronometry and its future prospects for the ad-
vancement of differential psychology as a natural science.

PSYCHOMETRY AND CHRONOMETRY COMPARED

The practical success of psychometrics is unquestionably one of the tri-
umphs of applied psychology. When nothing more than ordinal measure-
ment is required, there can be little dispute about the practical usefulness
of item-based mental tests. These are composed of a number of separate
items on which the subject’s responses are scored either right or wrong
(R/W) or pass/fail (P/F). Given the variation in items’ p values (the pro-
portion of the normative sample passing the item) and given a range of
individual differences in the ability to pass the items, the distribution of
total scores (e.g., the number right) constitutes an ordinal scale. An indi-
vidual’s score on such a scale is interpreted in terms of its location in the
distribution of scores obtained in some specified group, so the scores are
“norm referenced.” The interpretation of normative scores is facilitated by
various forms of scaling, such as ranking, percentile ranks, standardized
scores (e.g., z, T, 1Q), normalized scores, and various Rasch-type scales.
To suppose that any kind of transformation of the raw scores’ rank order
represents a true interval scale or a ratio scale, rather than merely an ordinal
scale, depends entirely on an assumption. Plausible and practical though
this assumption may be, it remains just an assumption. We have to assume
that the distribution of the essential variable, or latent trait, measured by
the test has a particular form in the normative population. Psychologists
usually assume that the trait has a normal (Gaussian) distribution, so the or-
dinal score distribution, whatever its form, is mathematically transformed
to conform to this assumption. Or items may be specially selected for dif-
ficulty level and item intercorrelations that will produce an approximately
normal distribution of scores. The transformed or manipulated test scores
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contain no new information that was not present in the rank-ordered raw
scores; the form of the distribution simply reflects the initial assumption.

Ordinal scales have many shortcomings. Without a true interval scale,
butarmed with only our faith in the unproved distribution assumption, we
cannot make really meaningful statements about many things we want to
know in differential and developmental psychology. For example, there are
obvious questions about the form of the population distribution of a given
trait, or the form of the growth curve for that trait, and its rate of change
across the lifespan. Knowing these things depends on having equal interval
measurements throughout the full range of variation in the characteristic of
interest. For the same reason, meaningful comparison of the within-group
variance between different groups whose score distributions are centered
in different ranges of the scale depends on measures having equal units
across the whole scale. Otherwise a difference of X points between two
scores near the high end of the scale is not assuredly equivalent to a differ-
ence of X points near the low end. The precision of covariance and of both
the Pearson r and intraclass correlation (but not Spearman’s rank correla-
tion) depends on equal-interval measurements of both variates. Without
an interval scale the specific form of any functional relationship, as might
be shown on a graph, say, in which mental test scores (y axis) are plotted as
a function of drug dosages (x axis), provides no dependable information
over what could be expressed by the rank correlation coefficient between
the x and y variables.

A ratio scale, with both a natural zero point and equal intervals, is even
less attainable by any plausible assumptions based on item statistics than
is an interval scale. Yet a ratio scale is essential for any valid mathemat-
ical manipulations of data beyond simple additivity. Without ratio scale
properties, multiplicative or ratio properties of the data cannot be known.
About 35 years ago, for instance, some psychologists proclaimed that chil-
dren, on average, acquire one-half of their mental growth potential by four
years of age. But psychometrics has no measurement scales that could test
this interesting claim. Answering this kind of question about height, or
weight, poses no problem at all. It would be scientifically useful if psy-
chologists could determine the functional relationship of various mental
measurements to the precisely known growth curves for certain structures
of the brain. But our psychometric tests cannot do this meaningfully. At
best, they cannot really provide anything more informative than a rank
correlation between any mental ability and any metrical property of the
brain.

This absence of ratio scales in differential psychology is most unfortu-
nate, as many psychological variables behave multiplicatively, exponen-
tially, or logarithmically in relation to internal and external physical vari-
ables, as has been discovered in sensory psychophysics, probably the most
advanced branch of psychology where measurement is concerned.



Mental Chronometry and the Unification of Differential Psychology 29

The noted limitations of the scale properties of psychological tests and
the claimed advantages of true interval and ratio scales might be dismissed
as a trivial issue for most aspects of applied psychometrics, for which reli-
able ordinality is sufficient for the practical predictive validity of tests. It is
not sufficient, however, for the advancement of differential psychology as
anatural science, especially the study of individual variation in the domain
of cognitive abilities, including the well-established dimensions, such as
g, verbal, and spatial factors. With only ordinal scales we do not know the
true form of the population distribution of each of these different factors
or the true amount of variance attributable to each one. Nor can we know
or compare their growth curves or their rates of decline with age. The fu-
ture of reductionist research in this field, which aims to be explanatory, will
necessarily be focused on discovering functional relationships between be-
haviorally measured cognitive abilities and their causal physical properties
and processes in the brain. A main scientific purpose of measurement is
the discovery and description of how one measured variable is related to
some other measured variable. Ideally, and often necessarily, the measure-
ments on both sides of the equation should be ratio scales. The physical
measurements in brain research per se are of course ratio scales. Arguably
the most natural scale for the behavioral measurement of mental activity
is time, a physical ratio scale of international standardized units.

ADVANTAGES OF MENTAL CHRONOMETRY

Mental chronometry (MC) has two main classes of paradigms: (1) the mea-
surement of an individual’s response time (RT) to a reaction stimulus (RS) that
elicits some form of mental activity and (2) the measurement of an indi-
vidual's inspection time (IT), or the minimum length of exposure needed by
the subject to discriminate between stimuli that differ on some dimension.
MC also includes derived measures obtained from mathematical relation-
ships (sums, products, ratios, etc.) between various RTs (or ITs), and these
also have the scale properties of physical measurements. Nowadays RT is
measured by an electronic apparatus that accurately registers intervals of
time in milliseconds (ms). Besides the undisputed virtue that time is a ratio
scale measurement, what are some of the most general advantages of MC
for advancing a true science of differential psychology?

RELIABILITY. RTs are always measured over a number of trials. The in-
ternal consistency reliability (e.g., Cronbach’s coefficient alpha) of individ-
ual differences in the mean RT obtained from a given number of trials can
be made as high as may be required for a particular purpose simply by
increasing the number of test trials. Reliability coefficients as high as those
of most good psychometric tests can be obtained in as few as 20 to 30 trials,
taking only a few minutes. The alpha reliability coefficients for different
numbers of trials conform near perfectly to the values predicted by the
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Spearman-Brown prophecy formula because the essential condition on
which the S-B formula depends is perfectly met, i.e., every RS is randomly
sampled from the same pool of RSs.

REPEATABILITY. Most chronometric tests can be repeated in identical
form over and over again. There is virtually an infinite supply of equiva-
lent forms of a specific test that are truly equivalent across administrations.
Practice effects are typically small compared to individual differences; they
approach asymptote after a certain number of trials (depending on RS com-
plexity), and they have relatively little effect on the reliability of individual
differences across trials or occasions. Repeatability of measurement is a
great advantage for a test that is used over an extended period of days,
weeks, or months to monitor a behavioral or cognitive effect of a drug or
other treatment. Repeatability is also a boon to the study of drug-dosage
curves; a given cognitive effect can be functionally related to differing
dosages of the drug. Because of this advantage, MC is now of interest
to pharmaceutical firms and treatment hospitals, as more and more new
drugs unintentionally have side effects on cognitive performance that can-
not be monitored repeatedly by ordinary item-based tests.

RANGE OF EQUIVALENCY. Conventional psychometric tests typically
have a very narrow range of equivalency compared to chronometric tests.
The IQs of low-scoring individuals on a test like the Wechsler Adult Intel-
ligence Scale (WAIS) are based on a largely different set of items than are
the IQs of high scoring individuals. Thus because of the limited range of a
given item’s p values for individuals in different segments of the score dis-
tribution, strictly speaking the same test cannot be given to low, medium,
and high scoring persons. Without Rasch scaling, at least, it is even ques-
tionable whether the same variable is being measured in the different abil-
ity groups. The same problem applies to children of different ages. Even
though a five-year-old and a ten-year-old are given nominally the same test,
they have actually been tested on entirely different discriminating items,
unless they obtain nearly the same raw score. The range of ability or age
within which the same test items are discriminative is remarkably narrow.
In contrast, one and the same chronometric test, with a set number of trials,
can discriminate as reliably among preschool children as among university
students, and among gifted as among mentally retarded children. More-
over, in all of these groups the chronometric measures have shown similar
correlations with IQ. The groups differ markedly in mean RT, of course,
and one can describe the differences in mathematically meaningful terms.
But with ordinary item-based tests given to such diverse groups we could
only rank the group means and estimate the statistical significance of their
differences. Direct comparisons of ability levels would be meaningless or
impossible.

SENSITIVITY OF MEASUREMENT. RT is an extraordinarily sensitive mea-
sure, showing reliable individual differences and within-subject differ-
ences in the cognitive demands of various elementary tasks that are
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virtually undetectable by psychometric tests. A classic example is a chrono-
metric analysis that shows how schoolchildren in the first grade perform
the simple arithmetic task of adding two single digit numbers (Groen &
Parkman, 1972). On each test trial the subject is shown two integers that al-
ways sum to values from o to 9. The subject responds by pressing one of ten
keys labeled with the digits o to 9, and the RT is measured in milliseconds.
Analysis of the RTs revealed what the children were doing mentally: First
they selected the larger (L) number in the given pair; then they counted up
the smaller (S) number (perhaps using their fingers). The RTs measured
on the various problems increased as a linear function of S, indicating
that even simple addition is not merely the unitary recall of a memorized
number fact but is a strategic construction. The contrast between this con-
structive effect and sheer memorization is seen in the finding that when
both numbers in the pair are the same, there is no systematic variation in
RT. This suggests that the sum of any two identical digits has been mem-
orized as a unit and RT simply reflects the time for retrieval of this item
of information from long-term memory. The RT for retrieval averages less
than the RT for construction.

It is most interesting that these very same strategic and memorial phe-
nomena are found also in young adult college students, although their RTs
average only about one-fourth the RTs of first-grade children. But the col-
lege students are still constructing addends from pairs of single digits in
the same way as first graders, only much faster. But college-age students
are also much faster than young children on every kind of RT. Studies of
elementary schoolchildren selected for ability to perform perfectly on sim-
ple addition, subtraction, and multiplication problems given as untimed
paper-and-pencil tests have shown significant individual differences when
RTs are measured on the same problems. There are also consistent mean
differences between RTs for addition, subtraction, and multiplication, indi-
cating differences in complexity of processing for the three types of arith-
metic (Jensen, 1998a, see references to Jensen & Whang). These pupils’
RTs on such simple arithmetic problems predicted their ability in more ad-
vanced types of arithmetic problem solving, consistent with the hypothesis
that success in complex problem solving depends in part on the speed with
which elementary components of the problem can be processed. Indeed a
whole psychology of arithmetic cognition could be ferreted out of cleverly
designed experiments based on chronometric analysis.

Other evidence of sensitivity is that chronometric measures detect vari-
ation in physiological state associated with an individual’s metabolic di-
urnal cycle, changes in body temperature, effects of exercise, stimulant
and depressant drugs, medical conditions, and the presence of genes that
are risk factors for the development of Alzheimer’s disease, such as the
apolipoprotein (APOE) e4 allele, even before its cognitive effects are clini-
cally detectable by psychometric tests specifically designed for this purpose
(O’Hara, Sommer, & Morgan, 2001).
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The sensitivity of RT can also be a disadvantage in that it is a source of
variance that acts as a measurement error in studies of individual differ-
ences. In studies of intra-individual differences, the sensitivity of RT can
be taken into account by obtaining repeated measures always at the same
time of day and monitoring indicators of physiological state at the time
of testing and the time since the last meal, body temperature, drug usage,
and time in the menstrual cycle.

THE PSYCHOMETRIC MISCONCEPTION OF MENTAL SPEED

Psychometric measures of mental speed, such as the digit symbol or cod-
ing subtest of the Wechsler scales and the clerical checking subtest of the
Armed Services Vocational Aptitude Battery, are mentally very easy tests
on which virtually all subjects would obtain a perfect score if the tests were
not highly speeded. The score is the number of items completed within a
given time limit. Such speeded tests have often been included in factor
analyses with many other more complex mental tests, such as vocabulary,
verbal and figural analogies, problem arithmetic, matrices, and block de-
signs, to name a few. In a hierarchical factor analysis these speeded tests
typically show up as rather small first-order factors; they have little vari-
ance in common with other tests as shown by the fact that they have smaller
loadings than other tests on any of the higher-order factors, least of all on
the most general factor, psychometric g. This has resulted in a long held and
strongly entrenched misconception in psychometrics that mental speed is
a minor factor in the abilities hierarchy and has little relevance to higher
mental abilities or the g factor.

The kinds of tests identifying this psychometric speed factor are decid-
edly different from the chronometric methods used to measure RT and
IT, which behave quite differently from the speeded tests used in psycho-
metrics. RT measured in various chronometric paradigms generally has its
largest correlations with the nonspeeded and most highly ¢ loaded tests,
whereas its lowest correlations are with the most speeded tests like the
digit symbol subtest in the Wechsler scales. Moreover, the correlations of
various RT measures with each other and with various nonspeeded psy-
chometric tests are generally similar to the correlations among the various
subscales of standard test batteries. More generally, we should realize that
the traditional distinction between speed and power in describing psycho-
metric tests is strictly a formal distinction. It is a mistake to attribute these
purely descriptive terms to categorically different cognitive processes.

STANDARDIZING CHRONOMETRIC METHODS

The study of individual differences in RT originated in astronomy, when ex-
tremely precise measurement of individual differences in RT, the so-called



Mental Chronometry and the Unification of Differential Psychology 33

personal equation, was critical in measuring the instant a star’s transit
crossed a hairline in the telescope. The units of time have been standardized
throughout the history of MC. Today these units, measured electronically
in milliseconds, are the same in all laboratories. What is seldom realized,
however, is that the testing conditions for obtaining these measurements
in different laboratories are not at all well standardized. This is most un-
fortunate for the development of a unified science. Under a comparable
handicap the physical or biological sciences could not have progressed to
their present level. This condition has seemed tolerable where MC is used
in experimental psychology, but it will prove a severe hindrance to differ-
ential psychology. This is because the former is concerned with the effects
of experimentally varying task parameters and measuring the effects on
RT within subjects, while variation between subjects is treated as unwanted
error, to be minimized by averaging RTs over a number of subjects or over
many test trials in a single subject. Only the direction and relative mag-
nitudes of the experimental effects are of interest. Thus it is not a critical
disadvantage that the exact numerical values of RT vary from one lab to
another, so long as the relative effects of experimental manipulations are
replicable across different labs.

Because differential psychology is concerned with differences between
subjects, the absolute values of RT become important. This calls for stan-
dardization of the methods by which RT is measured, unless we limit our
uses of chronometry to discovering purely relative effects and performing
only correlation analyses, methods for which measures of central tendency
and variance are irrelevant. Without standardization MC loses many of
its advantages. The failure of one lab to replicate the specific findings of
another lab using nominally the same paradigm can be due either to differ-
ences between the subject samples or to differences in the test instruments
themselves, although both are measuring and comparing, say, simple RT
and 2-choice RT to visual stimuli. Unless the same apparatus (or perfect
clones), as well as the instructions and the number of practice trials, are
used in both labs, a true replication is not possible.

The sensitivity of RT makes for considerable differences when nomi-
nally the same variable is measured by different, though equally accurate,
apparatuses. The difference arises not in the timing mechanism per se,
but in subtleties of the stimulus and response demands of the task. Given
the same testing conditions, any significant difference in results should
be solely attributable to a difference between the subject samples, not to
the conditions of measurement. Regardless of the RT data collected for a
particular study, an important element in describing the subject sample
(besides the usual descriptors such as age, sex, and education) should con-
sist of descriptive statistics based on, say, at least 20 trials of both simple
RT and 2-choice RT measured on the standard RT apparatus. Without such
methodological standardization in differential research, the cumulation of



34 Arthur R. Jensen

archival data from different laboratories is hardly worthwhile. Such fun-
damental standardization has been essential for progress in the so-called
exact sciences, and it is equally important for the advancement of a science
of differential mental chronometry. Decisions about the design of standard
apparatuses, methods, and procedures that should be required in every
chronometric laboratory will need to be worked out and agreed on by an
international consortium of researchers in this field. This agreement would
also include recommendations for electronically recording and archiving
chronometric data from labs using the standardized equipment and pro-
cedures. I find it hard to imagine a greater boon to the advancement of
differential psychology, with its present aim of discovering how behav-
ioral measurements of cognition are related to the physical properties of
the brain.

CHRONOMETRY AS A PRIMARY TOOL FOR RESEARCH
ON INTELLIGENCE

The century of progress in the psychometric approach to the study of men-
tal abilities, beginning with Spearman and Binet, has reached a consensus
regarding their factor structure. Relatively few factors, or latent variables,
account for most of the individual differences variance in practically all
psychometric tests. John B. Carroll’s (1993) systematic factor analysis of
the huge number of test intercorrelations reported in virtually the entire
psychometric literature shows that they are best represented by a hierarchi-
cal factor structure. Carroll named it the three-stratum model. It comprises
some forty first-order factors in the first stratum, eight second-order factors
in the second stratum, and one factor (psychometric g) in the third stratum.
The challenge now is to discover the causal basis of the individual differ-
ences from which these factors arise. Researchers now want to understand
them in terms of cognitive processes and brain physiology. The greatest
interest so far is focused on g, the most general component of the common
factor variance. It is also the most mysterious, as it cannot be character-
ized in terms of the information content of mental tests or in terms of any
observable types of behavior. As its discoverer Charles Spearman noted,
g is known not by its nature but by the variation in its loadings on a wide
variety of mental tests. But psychometric tests with the same g loadings
are so highly varied in their specific information content and the particular
mental skills called for as to defy a unitary classification in lexical terms.
The g factor itself is best thought of not as a verbally describable mental
ability, or even as an ability of any kind, but rather as an aspect of indi-
vidual differences that causes positive correlations between virtually all
measurable cognitive abilities.

The individual assessment of g is always problematic, not because g is
a chimera, but because its psychometric measurement as a factor score is
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always attached to a g-weighted average of a relatively small number of
diverse tests. Therefore, the psychometric “vehicles” of g also unavoidably
carry other factors besides g, including variance unique to each test. We
can only minimize these sources of non-g variance in the obtained g factor
scores. But because the contamination of g factor scores by the vehicles
of g is unavoidable, this attempt can only be more or less successful for
different individuals. Fortunately for research on the nature of g, it is un-
necessary to have a direct measure of g for each individual in a study. One
can indirectly determine the correlation of ¢ with other psychological and
physical variables by the methods of factor analysis or other latent trait
models.

The advancement of intelligence research along scientific lines now re-
quires extending its traditional methodology beyond the use of item-based
psychometric tests and the factor analysis of the virtually unlimited variety
of tests. During the past two decades, chronometric methods have gained
prominence in research probing the nature of g and other components of
psychometric variance. It is now well established that many types of RT
and IT are correlated with psychometric g and with IQ or other highly g-
loaded tests. The correlations for single elementary cognitive tasks (ECTs)
with RTs in the range from simple RT (about 200 ms) to more complex
tasks (not exceeding 2,000 ms in young adults) the correlations with 1Q
range from about .10 to .50. The general factor extracted from a battery of
several diverse ECTs has correlations with the general factor of a battery
of psychometric tests (e.g., the Wechsler scales) ranging between .60 and
.90. Studies of the RT/IQ relationship based on multiple regression, factor
analysis, canonical correlation, and structural equation models suggest that
chronometric and psychometric tests have much the same general factor
in common. Reviews of the empirical evidence and bibliographic entries to
virtually the entire literature on this subject can be found elsewhere (Caryl
et al., 1999; Deary, 2000a, b; Jensen, 1982a, b, 1985, 1987a, 1998a, Chap. 8;
Lohman, 2000; Neubauer, 1997; Vernon, 1987). So here I will not reiterate
the evidence proving that RT and IT are related to g. Rather, I shall point
out some of the collateral phenomena that have turned up in this field of
investigation. Their investigation is important for advancing this line of
research. A true theory of ¢ and its neural basis will have to account for
each of these phenomena, unless future research finally dismisses them as
unreliable or as experimental artifacts.

But first let me emphasize that the eventual explanation of g, as mar-
velous an achievement as that might be, is not the main purpose of mental
chronometry. Its scope is far wider. It is a general tool for measuring all
aspects of cognition. Our conventional psychometric tests, whatever their
practical usefulness, are not a higher court to which mental chronometry
must appeal for its scientific importance. Chronometric methods have gen-
erated a universe of psychological phenomena for study in its own right.
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That some of these phenomena happen to be related to psychometric test
scores is simply a fortunate discovery, helping us understand individual
differences in more functionally analytic terms than is possible with the fac-
tor analysis or multidimensional scaling of item-based tests. We recognize,
of course, that these psychometric methods have served a necessary taxo-
nomic purpose in describing the whole domain of psychometric abilities
in terms of a quite limited number of latent variables.

FUNDAMENTAL FINDINGS IN THE RELATIONSHIP OF
CHRONOMETRICS TO PSYCHOMETRIC ¢

Speeded Psychometric Tests

The RT-g correlation is not in the least explained by the time limits or
speed instructions given to the subjects taking the mental tests. In fact, the
types of tests that are usually the most speeded, such as clerical checking
and digit-symbol coding tests, have lower correlations with RT than do
so-called power tests, in which subjects are encouraged to attempt all the
items and to take all the time they need.

Tests” g Loadings
Tests with larger ¢ loadings generally show higher correlations with RT,
indicating that g is the main psychometric factor in the RT-1Q correlation.

Complexity of the RT Task

The absolute size of the RT-IQ correlation (which is always a negative r)
generally has an inverted-U-shaped relationship to the complexity of the
RT task. Simple RT (i.e., one stimulus—one response) with RTs of about 300
ms for young adults shows small correlations (—.10 to —.20); moderate tasks
(RTs around 500-9o0o ms) show moderate correlations of (—.40 to —.50); and
difficult RT tasks (above 1200 ms) show small correlations (—.20 to —.30).
One hypothesis proposed to explain this phenomenon holds that the sim-
plest RT tasks have a smaller cognitive component relative to a larger
perceptual-motor component, which does not reflect g. As the RT task de-
mands are increased in cognitive complexity beyond some optimal point,
a wider range of individual differences in an increasingly greater variety of
performance strategies comes into play. These include task-specific factors
that are uncorrelated with psychometric factors and therefore attenuate the
RT-g correlation. Also, when task complexity increases to the point that
response errors become a reliable source of individual differences, fewer
subjects are processing the RT task in the same way. Interestingly, those
forms of both RT and IT tasks that are the most liable to allow subjects
to adopt different strategies show the weakest correlations with IQ. Evi-
dently it is the sheer speed of processing, rather than the subject’s choice
of a strategy, that is most related to g.



Mental Chronometry and the Unification of Differential Psychology 37

Because we are often without an independent interval scale of task com-
plexity, task complexity is often measured by RT itself. Such RT measures
on simple tasks, though differing only in tens of milliseconds (i.e., time
intervals below the threshold of visual or auditory detection), have consid-
erable subjective validity as measures of task complexity. This was shown
when a group of university students was asked simply to rank the com-
plexity (or difficulty) of fourteen different items in a Semantic Verification
Test (SVT, described in the following section). Their subjective ranking of
item complexity, from least complex (=1) to most complex (=14), correlated
+.61 with the item’s average RTs obtained in another university sample
(Paul, 1984; Jensen, Larson, & Paul, 1988). It could well be that RT provides
the best measure of item complexity and could be used in the process of
item selection in the design of ordinary paper-and-pencil tests for children.
Simple test items can be scaled on a ratio scale of difficulty according to
their average RTs obtained in a group of bright university students who
can answer the items without error. Reliable discrepancies between the
item p values for children and the item RTs for university students would
indicate that p and RT are not scaling item difficulty (or complexity) on the
same dimension. I predict, however, that this would very seldom occur.

Correlation Trade-Off and Convertibility Between RT

and Error Responses

As RT tasks increase in complexity, there is a rise in response errors. The
correlation between RT and IQ decreases with a rise in response errors,
whereas the correlation between response errors and IQ increases. This
reciprocal trade-off suggests a breakdown in information processing at
higher levels of task complexity. The point of breakdown on the continuum
of difficulty or complexity and the resulting response error determine the
correlation of single test items (scored pass/fail) with IQ.

Untimed psychometric tests based on right/ wrong scoring of items with
little or no prior-learned knowledge, such as the Raven matrices and num-
ber series tests, are an example of this; the average item scores (p values)
reflect differences in item complexity or difficulty. If items are so easy that
nobody misses them (i.e., all item p values = 100%), differences in their dif-
ficulty levels can still be determined by measuring the RTs for solving the
items.

The convertibility between item RTs and item error rates can be shown
by means of a simple Semantic Verification Test (SVT) (Paul, 1984). Each
item in the test consists of a simple statement about the relative positions
of just the three letters A, B, C. There are 14 different statements, such as B
after A, or Bnotbefore A, or Bbetween A and C, etc., with a total of 84 pre-
sentations. Immediately following a 3-second presentation of one of these
statements on the display screen, three letters (e.g., A C B) are presented
simultaneously in an order that either affirms or disaffirms the statement.
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The subject, instructed to respond as accurately and quickly as possible,
presses one of two pushbuttons labeled YES or NO. The SVT was very easy
for Berkeley undergraduates whose average rate of response errors over
84 test trials was 7%. But their mean RTs on the 14 SVT items varied widely,
between 600 and 1,300 ms. Obviously the items differ in complexity or dif-
ficulty. (The correlation of subjects” mean RTs with scores on the Raven
Advanced Progressive Matrices was —.45 in Berkeley undergraduates.)

To obtain reliable measures of variation in item difficulty among the
fourteen SVT conditions measured as the p values of the SVT items, these
items had to be given to schoolchildren (ages 8 and 9 years) as an untimed
paper-and-pencil test, with an average item p value of 82%. The children’s
p values on the fourteen SVT items had a rank-order correlation of —.79
with the mean RTs of the corresponding SVT items in the adult sam-
ple. The more difficult an SVT item was for the children, the greater was
its average RT for university students. Thus an index of item difficulty
(p) for average third-grade schoolchildren is convertible into processing
time (RTs) for university students all in the top quartile of the nationally
normed IQ.

Primary versus Derived Measures in Chronometric Paradigms

Primary measures are the central tendency (mean or median) of an individ-
ual’s RTs over a given number (1) of trials. Derived measures are (1) the
standard deviation of an individual’s RTs over n trials (RTSD), (2) the in-
tercept of the regression of mean RTs on task difficulty, and (3) the slope
of the linear regression relating the individual’s mean RT on two or more
tasks to their differences in complexity (hence in RT). The slope parameter
is a key feature of three classic RT paradigms: the Hick paradigm (lin-
ear slope of RT over four levels of complexity measured in bits), the Saul
Sternberg paradigm (linear slope of RTs over 1 to 5 or more digits to be
scanned in short-term memory), and the Posner paradigm, where the slope
is the difference between only two means (Name Identity RT minus Phys-
ical Identity RT). These slope parameters are of considerable theoretical
interest, as the steepness of the slope is a prima facie measure of the rate
of information processing as a function of increasing information load. An
index of skewness of an individual’s RT distribution over 7 trials is another
derived measure that has more recently become of interest in connection
with the “worst performance rule” (discussed later).

The derived measures typically show lower correlations with IQ than
do the primary measures, which at least in the case of the slope parameter
is definitely contrary to the theoretical prediction. But the prima facie evi-
dence against the theoretical prediction that the slope parameter should be
correlated (negatively) with IQ at least as much if not more than the mean
RT was a premature and technically mistaken judgment. Two statistical
artifacts work against the overly simple analysis typically used to test the
prediction, namely, a simple (zero-order) correlation between slope and



Mental Chronometry and the Unification of Differential Psychology 39

IQ: (1) the low reliability of the slope measurement and (2) the intercept
measurement acts as a suppressor variable in the slope-IQ correlation (be-
cause the intercept and slope share the same measurement errors but in
opposite directions). These unwanted statistical effects are not intrinsic to
the theoretical prediction, but they can be taken into account by an appro-
priate statistical analysis based on disattenuating the slope measure and
partialling out the intercept from the IQ-slope correlation. When such an
analysis is applied to the Hick paradigm, the theoretical prediction of the
slope-IQ correlation is significantly borne out (Jensen, 1998b).

It should always be remembered that any derived measures, if based
on difference scores, X — Y, will have lower reliabilities than either X or
Y to the degree that X and Y are correlated with each other. This is some-
times forgotten in studies of individual differences in the Posner paradigm
and other difference scores such as the difference between choice RT and
simple RT. Not taking proper account of reliability in different derived
measures is often the reason why derived scores in RT studies result in
weaker correlations with external variables like IQ than do the primary RT
variables.

The Problematic Meaning of Inter-Trial Variability of RT

Inter-trial variability, also referred to as intra-individual variability, is mea-
sured as the standard deviation of an individual’s RTs over n trials, abbre-
viated RTSD. Its interest inheres in the hypothesis that RTSD measures
individual differences in “neural noise” or the result of random effects in
the transmission of information in the brain, and that the amount of neu-
ral noise is a causal factor in intelligence differences. RTSD is negatively
correlated with IQ in various paradigms to at least the same degree as
the median RT, even though RTSD usually has somewhat lower reliability
than RT, so that when all of the statistical parameters of the RT perfor-
mance are corrected for attenuation, RTSD has the largest correlation with
IQ. It therefore commands attention in the chronometric study of cognitive
differences.

RTSD has two problematic aspects, as yet unresolved. First is the ques-
tion of redundancy of the mean RT and RTSD. The near-perfect constancy
of the proportionality between the mean RT and RTSD, measured as the
coefficient of variation (Cy = o/u), both for individuals and for different
tasks is well established. It implies a perfect correlation between RT and
RTSD, corrected for measurement error. Therefore it is mysterious that
these two measures do not have the same correlation with IQ and that they
show significant interactions with race and sex differences (Jensen, 1992a).
Furthermore, analysis of several sets of median RT and RTSD showed that
the true-score correlation between the two variables is very high (averag-
ing 4+0.81), but that still leaves a significant 36% of the variance that the
two measures do not have in common. This noncommon variance could
result from the fact that all these analyses were based on median RT over #,
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FIGURE 1. Distributions of reaction times of individuals with normal and subnormal
IQs. (From Baumeister, 1998, p. 260, with permission of Ablex.)

not the mean RT. Because the RT distribution is always positively skewed,
the mean is always somewhat larger than the median. But it has not yet
been determined whether a perfect true-score correlation exists between
the mean RT and RTSD. If there is a perfect correlation, a purely statisti-
cal theory could account for it, as follows: (1) Every individual, at a given
time, has a physiological limit for the speed of reaction, determined by the
minimum times for sensory transduction of the stimulus and the nerve
conduction velocity and synaptic delays going to and from the relevant
sensory and motor regions of the brain. (2) On a given RT task, the range
of individual differences in the physiological limit is much smaller than
the range of individual differences in the central tendency (particularly
the mean) of RTs measured over many trials. (3) The location of the mean
RT, therefore, is determined by the distribution of RT deviations above
the physiological limit. (4) Because these deviations can only go in one
direction, their distribution is skewed to the right. (5) Whatever causes
the variable deviations in RTs thus has three perfectly correlated effects
on the first three moments (mean, SD, and skew) of the individual’s RT
distribution. Empirically, over many trials, the correlations among individ-
ual differences in the mean RT, the RTSD, and skewness would approach
unity. Theoretically, then, the parameters of an individual’s RT distribution
would all result from the individual’s physiological limit plus positive de-
viations of RT from that limit. This deviation phenomenon would be more
or less equally reflected by any one of these moments of the individual’s
RT distribution. This phenomenon is illustrated in Figure 1.
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This hypothesis reduces the problem of explaining the RT-IQ relation-
ship to that of explaining the cause(s) of the RT deviations above thresh-
old. Is it “neural noise,” implying true randomness, in which individuals
would differ? Or could it be a regular oscillation in neural receptivity, the
periodicity of which differs across individuals? A regular oscillation of ex-
citatory potential would simply appear to be random if on each test trial the
experimenter-controlled presentation of the reaction stimulus (RS) was sel-
dom synchronized with the individual’s period of oscillations above and
below the threshold of excitation for the given stimulus. We know that in-
creasing the intensity of the RS correspondingly decreases both the mean
RT and the RTSD, indicating that the threshold for the activation of a re-
sponse operates as a gradient or wave, not as dichotomous on/ off levels
of stimulus receptivity.

ANOTHER MEASURE OF RT VARIABILITY. For researching this hypothesis,
RTSD is not an ideal measure of individual variation in RT across trials. Itis
liable to include any systematic variation or trend in RTs across trials, such
as a practice effect. It would be more desirable to measure an individual’s
RT deviations across trials in a way that would determine if successive
deviations look as if they were produced by a random numbers generator,
given the lower limit and the mean of the individual’s RT distribution.

Such a measure of random variability, that does not reflect systematic
trends in the trial-to-trial RT measures, is provided by Von Neumann'’s
(1941) mean square successive difference (MSSD), or its square root. The MSSD
isdefined as 6> = [2(X; — Xi41)*/(n — 1), where X; and X;, are all sequen-
tially adjacent values (e.g., RTs on Trials 1 and 2, 2 and 3, etc.) and 7 is the
number of trials. It is most commonly used in time series analysis in eco-
nomics, where it is desirable to distinguish between random fluctuations
and systematic trends in financial data. The Von Neumann ratio (R = */0?)
provides one of the strongest statistical tests of randomness in a series of
n numbers. [The chance probabilities (p) of R for different values of n are
given by Hart (1942).] Although this statistic can indicate randomness of
RTs, it cannot, of course, distinguish between randomness due to neural
noise and randomness due to asynchrony between a regular oscillation in
neural excitatory potential and the intervals between presentations of the
RS. That distinction would have to be discovered experimentally by pacing
test trials to determine if the subject’s minimal RTs can be systematically
synchronized in accord with a regularly fluctuating oscillation of neural
excitatory potential.

The “Worst Performance Rule”

This RT phenomenon was named by Larson and Alderton (1990), who
defined it as follows: “The worst RT trials reveal more about intelligence
than do other portions of the RT distribution.” Their quite robust finding,
based on Navy recruits, was replicated with college students on different
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RT tasks (Kranzler, 1992); the phenomenon is also observed in comparing
persons with relatively low and high IQs (Jensen, 1982a). However, a study
by Salthouse (1998) based on very heterogeneous age groups (18 to 88 years)
did not show the worst performance rule (to be discussed later).

The analysis for demonstrating the phenomenon consists of rank order-
ing each individual’s RTs on every trial from fastest to slowest RTs and,
within each rank, obtaining the correlation between the individual’s RTs
and ability measures (e.g., Q). The RT-IQ correlations are seen to increase
monotonically from the fastest to the slowest RT trials.

This finding, however, appears not to be a new, independent RT phe-
nomenon. It is best viewed as a statistical consequence of the RT variance
phenomena described in the preceding section. Individual differences are
least in the smallest RT deviations above a physiological limit, and there
is an increasing variance of individual differences for larger deviations.
The phenomenon is most clearly seen in comparing groups of normal and
mildly retarded young adults on simple RT, shown in Figure 2. Even within
a normal group of young adults (Navy recruits) there is a monotonically
increasing coefficient of variation (Cy = SD/mean), going from the fastest
to the slowest RTs (e.g., Larson & Alderton, 1990, Table 4). (The same
phenomenon is clearly seen in the study by Salthouse, 1998, Table 1.) Con-
sequently, the larger deviations have less restriction of range, therefore
higher reliability and higher correlation with individual differences in 1Q.
The coefficients of variation across the RT ranks going from the fastest to
the slowest RTs, in fact, were correlated .998 with the RT-IQ correlations
within the ranks. Therefore the essential phenomenon calling for theoreti-
cal explanation is not the derivative worst performance rule itself, but the
fact that higher IQ subjects have consistently smaller RT deviations above
their physiological limit than do lower IQ subjects. The more basic question
is not yet answered: What causes individual differences in the magnitude
of these intra-individual RT deviations? The relationship of the various RT
parameters (mean, median, SD, MSSD, skew) to IQ and psychometric g all
derive from this one fundamental phenomenon.

Although the RT data per se in the study by Salthouse (1998) show es-
sentially the same features as those in other studies, the Salthouse results
differ markedly from the others by not conforming to the worst perfor-
mance rule with respect to ability. Going from the fastest to the slowest RT,
the correlations between RT and scores on various cognitive tests (with
age partialled out) show no upward trend. And there is a marked down-
ward trend in the correlations between age and RT, going from fast to
slow RT. Salthouse (1998, p. 165) attributes this discrepancy between his
and the other studies to several method differences — in the RT tasks, the
range of RTs elicited, the types of psychometric tests, the subjects” ages,
the number of practice trials, and other procedural differences. So many
variations simply rule out any possibility of a specific explanation for the
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FIGURE 2. Mean simple RT plotted as a function of rank order (from fastest to slow-
est) of each individual’s RTs, for groups of young adults with normal intelligence
(mean IQ 120) and with mental retardation (mean IQ 70). (From Jensen, 1982a,
p- 291, with permission of Springer-Verlag.)

discrepant results. Each of these studies appears methodologically sound
and the results in every instance must be taken seriously, yet each study is
so unique methodologically that they can scarcely be regarded as attempts
to replicate the same phenomenon. So the worst performance rule is not
brought into question, but the limits of its generality is questioned. The im-
portance of true replications of research findings emphasizes the need for
standardizing RT apparatuses and procedures in all laboratories engaged
in chronometric research.

Working Memory (WM) and Speed of Processing (SP)

Memory is a crucial phenomenon in normal cognition. However, it is not a
unitary construct. Stimuli (i.e., information) must be preserved in the neu-
ral processing system after their physical presence has ceased, and they
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must be held long enough in short-term memory (STM) for other process-
ing to occur. If the information input is at all complex and is needed for
getting on with the task, it needs to be processed into long-term memory
(LTM). That is one of the functions of working memory (WM), which is in-
volved in many reasoning tasks and has been called the “mind’s scratch
pad.” WMis a hypothetical ability that (1) rehearses information in STM for
storage in LTM, or (2) encodes or transforms information, or (3) simultane-
ously does 1 or 2 (or both) while processing newly arrived information from
the sensorium or retrieved from LTM (Baddeley, 1986). Backward memory
span, for example, engages WM capacity more than does forward digit
span; the same is true for arithmetic problem solving as compared with
mechanical arithmetic. The elements of a problem must be held in WM
long enough, or retrieved from the LTM store of past acquired information
and cognitive skills, to achieve solution. The capacity of WM refers to the
quantity of information it can juggle simultaneously without becoming
overloaded, causing a breakdown in processing due to the rapid decay of
STM traces and the consequent loss of information.

Quite simple laboratory measures of WM have remarkably high corre-
lations with IQ, and it has even been claimed that psychometric g (or fluid
intelligence, g 7, which is highly correlated with g) is little, if anything, other
than WM capacity. It is hard, however, to evaluate this seeming identity
between WM and g. It may be a matter of giving different names to the
same construct, as many of the tests of WM are indistinguishable from
the highly g-loaded items in psychometric tests. There is no sound basis
for pitting WM against mental processing speed as the more fundamental
explanation of g. Both constructs - WM and processing speed — are theo-
retically necessary. The essential question concerns how the two constructs
are related. It is a fact that RT derived from simple paradigms is at least as
correlated with tests of WM as with nonspeeded g-loaded psychometric
tests. RT derives its correlation with various psychometric tests almost en-
tirely through their mutual g loading; when g is statistically removed from
a test battery, it has a near-zero correlation with RT. The same is true for
WM.

Kyllonen (1993) tested 202 college students on nine diverse WM mea-
sures composed either of verbal, numerical, or spatial content and scored
as the percentage of correct responses; he also measured 2-choice reaction
time (CRT): subjects were presented an alphanumeric stimulus that was
either preceded or followed by an asterisk (e.g., *7) and they indicated as
quickly as possible which side the asterisk was on by pressing one of two
keys positioned 5 inches apart on the left- and right-hand sides of the re-
sponse console. The average correlation (reflected) between CRT and each
of the nine WM tests is .32; the average of all the correlations among just
the WM tests is .45. This small difference (.45 — .32) would likely vanish if a
slightly more complex CRT paradigm were used. The RT-IQ correlation is
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increased by including some demand on WM in the RT task. This is done
with a dual task paradigm, which interposes a different RT task between
the first reaction stimulus (RS,) and the response to it (RT,), thus: RS, —
RS, — RT, — cue for RS; — RT,, where RS, — RT, is the interposed task.
Both RT, and RT, are lengthened by this demand on WM, and both RT,
and RT, show larger correlations with g than when either task is presented
alone (Jensen, 1987b, pp. 115-118). Thus both processing speed and WM
are essential components of individual differences in g.

A plausible working hypothesis of the RT-WM correlation is that infor-
mation processing speed amplifies the capacity of WM by a multiplicative
factor in which there are consistent individual differences. Here is a brief
summary of the points I have elaborated on elsewhere (Jensen, 1982b,
1992b, 1993): (1) The conscious brain typically acts as a single-channel pro-
cessor with limited capacity, (2) this restricts the amount of information that
can be dealt with simultaneously and the number of operations that can be
simultaneously performed on it, (3) there is a rapid decay of information in
STM, which limits the time allowed for manipulating the input or consoli-
dating new information into LTM by rehearsal, (4) overloading the capacity
of WM results in a breakdown in processing, i.e., some loss of information
essential for correctly responding to the task, (5) a faster speed of process-
ing allows more operations to be performed on the input per unit of time,
thereby increasing the chances of reaching a successful response before the
point of overload and breakdown due to loss of information, (6) because
of individual differences in speed of processing, a series of novel tasks of
increasing complexity will show corresponding individual differences in
the point of breakdown on the complexity continuum, (7) psychometric
tests with items scored right/wrong depend on the complexity continuum
(item p values) for measuring g, (8) therefore, individual differences in
speed of processing and its amplification of WM capacity are the cause
of psychometric g. The specific neural mechanisms involved are not yet
known.

Brinley Plots and the Generality of Processing Speed
Differential psychology is mainly concerned with individual differences.
But aggregated data, such as mean differences between groups selected
to differ on a given trait, afford an essential tool for discovering the com-
mon features of the group difference, which consists simply of aggregated
individual differences. By aggregating the measurements of many indi-
viduals one can distinguish the particular variable of interest from the
“noise” caused by other, usually unknown and probably unique, sources
of individual variation.

The aggregation principle has been most informative in recent chrono-
metric research studies using a graphical method known as a Brinley plot.
Originally used in the study of cognitive aging (Brinley, 1965), it consists
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FIGURE 3. Brinley plot of processing speed measures (in seconds) on 15 different
RT tasks given to adults in the lower (Low CF IQ) and upper (High CF IQ) halves
of the distribution of scores on the Cattell Culture Fair Intelligence Test. The data
points are well fitted by the linear regression (+* = 0.99). (From Rabbitt, 1996, with
permission of Ablex.)

of a bivariate plot of the RT means for each of a number of diverse RT tasks
in two selected groups (e.g., low IQ and high IQ). One group is plotted on
the x axis, the other on the y axis, and the regression line of ¥ on x goes
through the bivariate data points. If the contrasted groups should differ
in processing strategies on the various tasks, indicating an interaction be-
tween groups and tasks, the plotted bivariate means fall off the regression
line. The goodness of fit of the RT means to the regression line is indicated
by r2,, i.e., the proportion of variance in one variate predicted by the other.

An example of a Brinley plot is given by Rabbitt (1996). Cattell’s Culture
Fair Test of IQ was given to adults who then were divided into the lower
and upper halves (called Low CF IQ and High CF IQ) of the total distribu-
tion of CF test scores. They also took fifteen chronometric tasks with quite
diverse but simple cognitive demands. Figure 3 shows a Brinley plot of
the mean RTs on the fifteen tasks. All the data points closely fit a linear
function. The squared correlation (r* = .99) between the RTs of the High
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and Low IQ groups indicates that 99% of the variance in the fifteen data
points of the Low IQ group is predicted by the data points of the High IQ
group (and vice versa). The slope of the regression line is indicated by the
raw regression coefficient of 1.33, which approximates the average ratio
of Low 1IQ RTs/High IQ RTs across all of the 15 tasks. (The standardized
regression coefficient is ¥ = v.99.) Rabbitt (1996) interpreted this result as
evidence that individual differences in CF test scores (which are highly
g-loaded) “facilitate all decisions [in the various RT tasks] in close pro-
portion to the times needed to make them, irrespective of their durations
(relative difficulty) and of the qualitative nature of the comparisons, and so
of the mental processes, that they involve” (p. 79). RT increases multiplica-
tively with task complexity in direct proportion to the number of operations
or processing steps involved in the task.

Although a Brinley plot reflects the large global factor (probably g) that
both the psychometric and chronometric variables have in common, Rab-
bitt notes that the plot does not capture the fine grain of variation between
specific RT tasks. Any given task may differ in the simple ratio of the means
of the contrasted groups, thus departing from the common regression line
(i.e., the average ratio for all of the RT tasks). Granted this relative insen-
sitivity of Brinley plots for highlighting reliable task specificity (i.e., its
interaction with group differences on a second variable such as 1Q), it is
the multiplicative or ratio property, not the additivity, of task differences
that is the seminal discovery. It would have been impossible to discover,
much less prove, this ratio property of task difficulty without chronomet-
ric methods, as they have the theoretical benefit of a true ratio scale. With
psychometric test scores, on the other hand, ratios and proportions are
meaningless.

Other examples of the Brinley-plot phenomenon are also displayed in
Rabbitt’s 1996 article and in other chronometric studies of group differ-
ences, particularly changes in cognitive abilities across the lifespan. Brin-
ley plots all look much alike, indicating the broad generality of processing
speed across a wide variety of elementary cognitive tasks (ECTs) for vari-
ous kinds of group differences. In every study, the RTs of the slower group
are predicted by a single constant multiplier of the corresponding RTs of
the faster group. The correlation (predictive validity) is typically in the
high .gos. Studies of mental development have compared RTs of children
in different grades in school (Fry & Hale, 1996; Hale 1990; Hale & Jansen,
1994; Kail, 1991a, b). Academically gifted 13-year-old students were com-
pared with age-matched average children and with university students on
eight RT tasks (Cohn, Carlson, & Jensen, 1985), resulting in Brinley plots
averaging a correlation of .96. Studies of cognitive aging used Brinley plots
to compare adult groups of different ages (Cerella, 1985; Cerella & Hale,
1994). Brinley plots of RT differences showing the typical global effect of
differences in processing speed have also been found in contrasting the
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following conditions with control groups: brain injury, multiple sclerosis,
and clinical depression (references in Myerson et al., 2003). Changes or dif-
ferences in ability associated with cognitive development, cognitive aging,
health conditions, giftedness, and IQ differences at a given age all reflect
global differences in speed of processing in a wide variety of RT tasks.
The impressively thought-out article by Myerson et al. (2003) provides
the most sophisticated theoretical and quantitative development of this
global speed of processing phenomenon. It will prove heuristic to hypoth-
esize that this same global process is the basis of g and affects every form
of information processing encountered by individuals throughout life.
What ultimately needs to be discovered is the physical basis of differ-
ences in cognitive processing speed. Current research based on positron
emission tomography (PET scan) and functional magnetic resonance imag-
ing (fMRI) have proven valuable in discovering the specific regions of brain
localization for certain cognitive functions, including the areas of cortical
activation (mainly in the frontal lobes) associated with performance on
high g-loaded tests (Duncan et al., 2000; Thomson et al., 2001). Of course,
it is important to determine whether the very same cortical areas are acti-
vated in performance on the general factor of various chronometric tasks.
But the next step in achieving a complete physical account of the causal
mechanisms involved in g must go beyond studies of brain localization. It
must eventually deal with the neural networks in the activated areas on the
brain indicated by PET and fMRI. Research strategy in this frontier, similar
to the research strategy in particle physics, calls for experimentally test-
ing hypotheses about the known neurophysiological processes that could
account for specific behavioral manifestations of g, as measured under
standardized laboratory conditions. For the reasons outlined earlier in this
chapter, I believe that the methods of mental chronometry should prove to
be a most valuable research tool for advancing toward this ultimate goal.
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Reductionism versus Charting

Ways of Examining the Role of Lower-Order
Cognitive Processes in Intelligence

Lazar Stankov

Following on Locke’s theory that the senses are the building blocks of think-
ing and knowledge, Galton (1883) proposed that fine differences in sensory
discrimination should be related to individual differences in cognitive abil-
ity. Although the evidence accumulated by the beginning of the twentieth
century strongly rejected this proposal, near the end of that same century,
there was a reemergence of related views. These views have always been
motivated by a desire to uncover the biological roots of intelligence.

The groundwork for a renewed interest in the relationship between
lower-order processes and intelligence was set in the 1970s with devel-
opments that eventually crystallized into different programmatic orienta-
tions and aims. One of these was frankly reductionist and very much in a
Galtonian tradition. The other approach — charting — was motivated by a
realization that, for historical and technical reasons, the domain of cogni-
tion was far from being covered in all its breadth in psychometric studies
of intelligence; the task of mapping it out is far from being finished. In
the late 1980s research on cognitive aging, which is somewhat removed
from the traditional area of intelligence, also moved in the direction of
linking lower-order processes and intelligence. This work, however, com-
bined both reductionist and charting features. My aim in this chapter is to
review recent developments within these three orientations and consider
implications for psychometric theories of intelligence.

Contemporary work in all three orientations has been influenced by
developments that saw changes in the interpretation of “sensory.” The
shift was away from acuity measures of sensory discrimination (i.e., abso-
lute and differential thresholds), which were seen as crucial to the mean-
ing of sensory in the pre-Binet test times, and toward a variety of sim-
ple cognitive processes that are presumed to be the ingredients of more
complex cognitive processes of the kind involved in typical tests of in-
telligence. Associated with this new focus was an increased reliance on
timed (i.e., speed) measures of mental processing that was facilitated by
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the availability of microcomputers. Initially, it appeared as if the “cognitive
components” approach (the breaking down of, say, an analogical reason-
ing task into its ingredient processes), as advocated by R. Sternberg, and
the “cognitive correlates” approach of E. Hunt (correlating a parameter of
a well-understood cognitive task, like sentence—picture verification, with
intelligence test scores) are conceptually different. It was quickly realized
that they are not. At about the same time (i.e., the late 1970s), A. Jensen
became interested in the relationship between simple and choice reaction
time and intelligence and initiated a large number of studies utilizing the
Hick paradigm. Cognitive components and correlates, as well as aspects of
simple and choice reaction times, rapidly became known as “elementary
cognitive tasks” (ECTs, Carroll, 1976)." Carroll’s (1976) list of ECTs was
expanded in the ensuing years, but without a systematic framework for
sampling of the tasks from the cognitive domain being instituted. In other
words, the theoretical background that was evident in the original (i.e.,
components and correlates approaches) attempts to link cognitive psy-
chology to the study of intelligence has largely disappeared and the choice
of the ECTs seems to have become related to the whim of the researcher. In
effect, any elementary cognitive task that showed a glimmer of correlation
with higher-order processes was quickly placed onto somebody’s research
agenda.

REDUCTIONISM: PSYCHOLOGY AS A SCIENCE SANDWICHED
AMONG THE “TURTLES-ALL-THE-WAY-DOWN"’

The most pronounced current in today’s attempts to link lower-order pro-
cesses to intelligence is contained within a reductionist agenda. Ultimately,
the hope is that it will be possible to show that physical characteristics of
the organism can account for at least a part, perhaps a significant part,
of the individual differences in higher-order cognitive processes. An anec-
dote that inspired the above subtitle, as retold by Stephen Hawking in the
“Brief History of Time,” is about a well-known scientist who delivered a
public lecture on astronomy. He described how the Earth orbits around the

* Carroll (1976) was quite enthusiastic about these developments. He proposed a taxonomy
of cognitive processes and embarked on the task of classifying measures of primary mental
abilities like those contained within the Educational Testing Services’ Kit of Reference tests
(French, Ekstrom, & Price, 1963). The title of Carroll’s report “New Structure of Intellect”
harked back to Guilford’s taxonomic ideas from the preceding decade, but by that time, the
“cognitive revolution” has made its impact on studies of intelligence, and the taxonomy
of ECTs looked relatively modern by comparison. In retrospect, it is perhaps interesting
that Stankov (1980) employed cluster analysis to show that the hierarchical structure that
emerges from Carroll’s taxonomy approximates quite well the structure that is postulated
by the theory of fluid and crystallized intelligence. One may lament over the fact that a
similar taxonomy of currently popular ECTs does not exist.
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sun and how the sun, in turn, orbits around the center of a vast collection
of stars called our galaxy. At the end of the lecture, a little old lady stood
up and said: “What you have told us is rubbish. The world is really a flat
plate supported on the back of a giant tortoise.” When the scientist replied
with a question, “What is the tortoise standing on?,” the answer came back
quickly “But, of course, it’s the turtles all the way down.” Reductionism
is based on the notion of sciences being ordered hierarchically.> One such
hierarchy places sociology on the top, followed by psychology, biology,
chemistry, and atomic physics.

Deary (2000) is perhaps the most vocal advocate of a reductionist posi-
tion in psychology. After downplaying attempts to understand intelligence
in terms of its predictive validity (i.e., in terms of “still more molar pro-
cesses”), he states that “potentially more important and profound, though,
are attempts to explain intelligence by appealing to differences in lower-
level psychological and biological processes” (Deary, 2000, p. 32). Thus,
Deary distinguishes between two kinds of reductionist explanations. I be-
lieve that one of these —biological reductionism — can be useful in providing
additional, and perhaps even more profound, explanations of some (hope-
fully, for the sake of our science, never all) psychological phenomena. Mea-
sures of brain functions as detected by EEG recordings, various kinds of
brain imaging, and the like promise to provide interesting new hypotheses
about the nature of psychological processing that takes place in the course
of carrying out cognitive activities.> For example, our recent work (Stankov
et al., 2002, in preparation) focuses on the gamma-band frequency range
(centered on 40 Hz) of EEG recordings. This frequency range has been
implicated in discussions about what is known as the “binding problem”
in neuropsychology. This has to do with the fact that quite distinct and
geographically separated brain areas may be engaged almost simultane-
ously in any act of cognitive processing. The suggestion has been made that
gamma-band frequency provides information about this synchronicity.

The notion of binding and related ideas of psychological tuning-in of
processes from distinct brain areas are, of course, related to Hebb’s (1949)
conception of cell assemblies that underpins his theory of intelligence. Our
own interest in this topic derived from a suggestion that individual differ-
ences in measures of synchronicity, such as the speed with which different
brain regions achieve synchronous activity or the amplitude (strength) of
joint activity of different brain regions, may be related to scores on in-
telligence tests. Our findings to date are encouraging. There are indeed

2 There are also references to the world resting on turtles’ backs in Indian mythology.

3 It is necessary to stress at this point that “promise” is the operative word. Despite consid-
erable effort over the past half century or more at linking physical substrata to intelligence,
precious little useful information can be extracted from a large, but often inconclusive and
contradictory, body of research.
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significant correlations between measures of synchronicity across different
brain regions and scores on tests of intelligence. The number of significant
correlations and their sizes rule out the interpretation that the effects are
due to experimental or sampling errors. Thus, people who have higher IQs
appear to show quicker and stronger tuning-in of brain regions that are
responsible for carrying out particular cognitive acts.

If replicated, these findings may have important implications for the
nature of fluid (gf, Hebb’s intelligence A) and crystallized (g., Hebb’s in-
telligence B) abilities. This may include demonstrations that 8fr 8 and
other broad abilities involve different brain regions, which may corrobo-
rate brain imaging data. More importantly, the work may shed light on the
issues that were of major interest to Hebb: how do g and g, (and other
broad abilities) develop during childhood and what happens in the pro-
cess of recovery from prolonged sensory deprivation or after brain injury.
Indeed, the work may provide us with a window for looking at changes
in neural plasticity during the whole of human lifespan and therefore pro-
vide a sophisticated and sensible understanding of the interplay between
nature and nurture. This is because the measurement of synchronous ac-
tivity in different brain regions can be used to study the formation of new
neuronal networks through repeated stimulation that arises from experi-
ence. This is the basis of learning and therefore of both fluid and crystallized
intelligence.

However, Deary’s (2000) alternative type of reductionism — the use of
lower-level psychological processes such as sensory processes and the
ECTs - as explanations of individual differences in intelligence test per-
formance I take with a large dose of scepticism mainly because the divi-
sion into lower-order and higher-order processes is arbitrary. There have
been numerous instances of a process that initially seemed to belong to
the lower order proving to be, on closer scrutiny, complex and therefore
belonging to the higher-order category. It may therefore be wise to wait
for the charting of the cognitive domain to be completed before we em-
bark on the reductionist explanation based on lower-order psychological
processes.*

Nevertheless, the main reason for studying ECTs within the reduction-
ist framework clearly resides in a desire to get closer to the biological level
of explanation. As pointed out by Stankov (2002a, b), the reductionist ap-
proach is closely linked to a research program that is strongly influenced
by theories of intelligence that emphasize a general factor g and, as a rule,
pays only lip service to other broad and primary mental ability factors
sometimes mislabeled as “specific” factors. An important line of argument

4 Even if the hierarchy of cognitive processes were to be shown to exist, it would not nec-
essarily follow that lower-order processes can explain everything about the higher-order
processes, as reductionists seem to want to argue.
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is an attempt to show that the genetic part of variance in intelligence tests
is identical, or perhaps closely linked to, the genetic component of elemen-
tary cognitive tasks. A corollary of this argument is the assumption that a
general factor that can be extracted from a battery of ECTs is linked to the
general factor of intelligence. A study reported by Luo and Petrill (1999)
is one in a series of studies with this general agenda. To gain a feel for the
type of tasks employed in this line of research, consider a couple of ECTs
used by these researchers:

Stimulus Discrimination. “Subjects in the Sensory Discrimination task
were presented with six blank windows in the bottom portion of the
screen, and a probe window in the upper portion of the screen. The
six windows would each display a different diagram, and the probe
window would present a diagram identical to one of the six diagrams
below. The subject’s task was to find the match to the probe in the
windows below, and indicate it as quickly as possible.”

Inspection Time. “Two diagrams were presented simultaneously for a
very brief duration and were then masked, and subjects were asked to
determine whether they were the same. The presentation time varied
until a threshold duration for correct identification was determined”
(Luo & Petrill, 1999, p. 160).

Altogether, Luo and Petrill (1999) employed six different simple tasks
from which nine ECT measures were derived. They also administered
Wechsler’s Intelligence Scale for Children (WISC) scores, as well as scholas-
ticachievement measures. Stankov (2002b) pointed out that a general factor
obtained from the WISC scores became weaker if the nine ECT measures
were added to the battery. Furthermore, a separate chronometric factor
with loadings from the ECT measures emerged as well. This weaker gen-
eral factor is simply a consequence of the inclusion of the ECTs — simple
tasks that have low correlations among themselves and with the general
factor. However, Stankov (2002b) did not comment on the main point of
Luo and Petrill's 1999 paper, which was that the correlation between the
g-factor and scholastic achievement measures did not change with the ad-
dition of the ECTs to the battery. Thus, if you have a general factor from
the WISC and a general factor that is derived from the WISC plus ECTs,
correlations of both these general factors with scholastic achievement are
about the same. This too may be a consequence of low correlations between
the ECTs and all other measures; they have poor predictive validity.”

5 Butin this particular case it is likely that a somewhat different situation obtains. For technical
reasons Luo and Petrill (1999) could not test directly whether their chronometric factor by
itself predicted scholastic achievement. Since ECT correlations with school achievement are
small but not totally insignificant (they range from .13 to .32, with median of .24), it is quite
possible that ECTs do indeed add to the prediction equation an aspect that is different from
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It is interesting to observe that one of the driving forces behind study-
ing lower-order processes in relation to intelligence — the hope of showing
strong genetic links between them — may not be borne out strongly in
empirical research. Thus, a generic version of the inspection time (IT) mea-
sure, similar to the one described earlier, was employed in a recent study
reported by Luciano et al. (2001). Curiously, the findings indicate that heri-
tability estimates for IT are smaller than those for intelligence itself. If men-
tal speed and inspection time are “basic” — that is, they reflect processes
that are closer to physical aspects of the organism than IQ measures —
one would expect that the heritability estimate for IT would be as high as
the heritability of IQ. It may be that heritabilities of EEGs (or measures used
in brain imaging) are considerably lower than those of intelligence itself.
With this in mind, one may be tempted to argue that small correlations be-
tween lower-order processes and intelligence are due to low heritability of
the lower-order processes. Biological reductionism, contrary to its driving
force, is not necessarily linked to either nature or nurture.

A large body of literature exists on two ECTs. One of these is the inspec-
tion time paradigm that has been of particular interest to Deary (2000).
Over go articles are based on IT, and one whole 2001 issue of the journal
Intelligence is devoted to the same topic. In the most recent meta-analysis by
Grudnik and Kranzler (2001), the average raw correlation between IT and
IQ is —.30 (or —.51 when corrected for the presumed artifactual effects).
Traditionally, IT has been interpreted as a measure of mental speed which,
in turn, is seen as the basic process that underlies individual differences
in intelligence. Nettelbeck (2001) is one of the initial contributors to the
study of IT and, to this day, one of the main figures in IT research. His
most recent interpretation of the correlation between inspection time and
psychometric abilities is at variance with the prevailing view. He claims
that IT is sensitive both to focused attentional capacities and to decision
processes that monitor responding. Furthermore, he points out that in a
young adult group, IT is correlated with the g; (broad speediness) func-
tion and, in the case of visual IT, to broad visualization (g,) abilities. Con-
trary to the common assumption, in this group of participants IT is not re-
lated to fluid intelligence (). Yet again, what might have been seen as an
“elementary” and simple process escapes simple interpretation and turns
out not to be easily tractable, a familiar story in psychology.

Another popular ECT paradigm involves the measurement of sim-
ple and choice reaction time as frequently employed by Jensen and his

the general factor. To the extent that they do, the role of the general factor is undermined.
In other words, since there are correlations between the ECTs and school achievement and
the general factor does not account for them, it is logical to conclude that these correlations
are due to the chronometric factor. This possibility was not discussed by Luo and Petrill

(1999).
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collaborators (see Jensen, 1998). Both these measures of mental speed tend
to have lower correlations with the general factor than does IT, around .20
overall. Itis hard to understand the importance that is sometimes attached
to such low, and frequently insignificant, correlations. Roberts and Stankov
(1999) measured choice reaction time using the card-sorting paradigm. This
procedure places a greater demand on decision processes than the typical
Hick’s paradigm employed in Jensen’s work. Their data point out that it is
the decision time, calculated from card sorting and several other measures
of mental speed, that has the central role in linking mental speed to intelli-
gence. The decision process itself is certainly more complex than processes
underlying most of the ECTs. This finding, together with the tendency for
choice reaction time to correlate higher with intelligence as the number of
choices increases, suggest that the study of complexity, not “elementarity,”
is likely to be a more crucial aspect of intelligence.

Research employing elementary cognitive tasks has shown that nothing
of substance has really changed since the beginning of the last century. In
fact, a recent study by Acton and Schroeder (2001) revisited the original
sensory discrimination interpretations of Galton. Based on a rather large
sample of almost goo participants, they report correlations of .21 between
pitch discrimination and ¢ and .31 between color discrimination and g.
These authors suggest that sensory discrimination is relatively distinct
from general intelligence, and that their results cast doubts on a strong
form of the sensory discrimination explanation of g.

I suspect that one of the reasons for Deary’s (2000) claim that reduction-
ism may provide “more important and profound” explanations derives
from concerns about psychology’s status as a scientific discipline. It is of-
ten claimed that if we can understand psychological phenomena in terms
of biological processes, we are on a firmer, more scientific, ground. The
popularity of neurosciences and related fields today derives in part from
such concerns about psychology. Clearly, this is a weak argument. After
all, biology itself is not a science because it can be understood in terms of
chemistry. As described earlier, the reductionist view of science is akin to a
series of turtles standing on top of each other, with each lower-level turtle
representing a science that is a basis, and therefore an explanation, for a
higher-level science. However, a branch of science is defined primarily in
terms of the existence of a unique subject matter and method, not in terms
of its position within the turtle hierarchy. Psychology is fine from the for-
mer point of view; turtles cannot be a justification for calling something
science.

In the long run, recent attempts to link lower-order ECTs to intelligence
are likely to be seen as useful, but not for reasons hoped for by the current
advocates of reductionism. A large body of literature on IT, choice reaction
time, and ECTs, similar to those studied by Roberts and Stankov (1999),
is certainly a contribution to the overall aim of psychometric charting the
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cognitive domain in its entirety. However, explanatory aspects derived
from ECTs are probably better kept in the background.

CHARTING AS A WAY OF BREAKING THE CHAINS OF THE
PAPER-AND-PENCIL TESTING MEDIUM

Psychometric testing, to this day, has been dominated by the medium
used for test administration. To the extent to which current theories of
intelligence focus on verbal (usually written), quantitative, and spatial
(two-dimensional drawing) abilities, we can say that “the medium is the
message.” The predominant use of a single testing medium is usually jus-
tified by the argument that higher-order processes can be measured about
equally well irrespective of the input modality. This is sometimes referred
to as the “irrelevance of the indicator.” But, although the focus on these
areas may encompass a large part of the cognitive domain, much is left un-
touched. An increased use of multimedia (dynamic stimuli, color, photos,
and moving pictures with sound) facilities for contemporary test devel-
opment would be one way to remove this limitation within the visual
modality itself.

Another way is to accept the fact that sensory modalities other than
vision have remained largely unexplored in psychometric literature and
use them as a broad framework that can provide for a systematic explo-
ration of new areas. From this perspective, lower-order processes become
important for two reasons. First, given the importance of complexity for
our understanding of intelligence, it may be profitable to combine tasks
based on different sensory modalities into competing versions, both dual
and multiple. Exploring the unique feature of each modality can be the
first step in the direction of developing competing multiple tasks, and thus
expanding the study of cognitive complexity. Second, and most important,
is the plausible assumption that each sensory modality has a unique set of
processes that have hitherto been left out of studies of individual differ-
ences. These cognitive processes may be simple and similar to the ECTs,
but some of them may be complex and therefore need to be classified as
parts of broader abilities like ¢ and g.

The study of auditory abilities can provide illustrations for both these
points. Sensory and perceptual processes in audition were brought into
the realm of intelligence testing in the late 1970s. Prior to that decade psy-
chometric studies in the area of listening did exist, of course, but much of
their importance derived from the practical needs to select candidates for
musical training on the one hand and for military duties (e.g., radioteleg-
raphers and sonarmen) on the other. Systematic studies of musical and
listening abilities within the realm of intelligence research pointed to the
existence of several primary auditory abilities that were not a part of pre-
vious structural accounts of intelligence (see Stankov & Horn, 1980). These
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abilities include perception of rhythmic patterns and perception of audi-
tory material under various forms of distraction and distortion that define
a broad auditory function (g,) at the second stratum. These also include
tonal memory, which proved to be distinct from short-term memory that is
measured by nonmusical material, although the time interval for retention
and recognition is approximately the same. Tonal memory is also distinct
from short-term memory in other modalities because it is more closely re-
lated to auditory sensory discrimination. g, is, therefore, a broad perceptual
function similar to broad visualization (g,) in the visual domain.

Another primary ability, temporal tracking, is not strongly dependant
on sensory processing. Tasks that measure this ability require keeping in
mind previously presented stimuli and either ignoring them or taking some
specific action when presented with the same stimuli again. Since its main
feature is a sequential presentation of information, stimuli that are not
auditory in nature can be easily employed for its measurement. But se-
quential presentation was previously ubiquitous to auditory stimulation.
Its importance was not fully realized in studies based on the typical paper-
and-pencil medium. In fact, processes captured by the construct of working
memory, which subsequently became popular in accounts of reasoning and
fluid intelligence, are largely sequential in nature. Furthermore, the iden-
tification of primary abilities within the auditory area paved the way for
the selection of component tasks in dual or competing tasks studies. These
tasks can be interpreted in terms of divided attention and as manipulations
of complexity par excellence.

Our recent work has examined the structure of tactile, kinaesthetic, and
olfactory abilities with the primary aim of charting the domain and, hope-
fully, uncovering neglected cognitive processes that are unique to each do-
main but may be important for intelligent behavior (see Roberts, Pallier, &
Goff, 1999). Two studies of tactile/kinaesthetic abilities have been carried
out over the past several years. Within traditional intelligence research
and related areas of personnel selection, tactile and kinaesthetic abilities,
particularly the latter, are treated within the context of the psychomotor
abilities. Our work, however, was motivated by neuropsychological find-
ings. In the first study (Roberts et al., 1997) marker tests of gr, g, and
8o were given together with several measures from the Halstead—Reitan
Neuropsychological Test Battery and other measures of tactile and kinaes-
thetic sensory and perceptual processes. An interesting finding emanating
from this research was that complex Halstead—Reitan tasks could not be
separated from broad visualization (g, Pallier, Roberts, & Stankov, 2000).
In other words, the processes involved in complex tactile and kinaesthetic
tasks seem to activate spatial visualization abilities during their perfor-
mance. This finding, of course, augurs well with the practice encouraged
by the sport coaches and puppetry performers who use visualization as
a form of practice of skilled movements. It was also apparent that tactile
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and kinaesthetic tests used in neuropsychological research may be, in fact,
measuring fluid intelligence. In other words, the tasks that are used for
the detection of brain damage but do not depend on the verbal or written
medium are effectively measuring higher-order cognitive processes.

On the basis of the experiences gained with auditory stimuli, we rea-
soned that the inclusion of simpler tactile and kinaesthetic tasks in a bat-
tery of neurological tests may bring out either a broad perceptual factor
encompassing both these modalities or separate broad tactile and kinaes-
thetic factors analogous to g, and the spatial-visualization factor, g,. This
reasoning led to the design of a second study in which several lower-
order tactile and kinaesthetic tasks were employed. In the outcome, two
factors — one in the tactile and another in the kinaesthetic domain — were
found (Stankov, Seizova-Cajic, & Roberts, 2000). Tactile abilities require
processing that depends on fine discrimination of pressure on the skin.
Kinaesthetic abilities involve the awareness of (passive) movements of up-
per limbs and the ability to visually recognize a path that individuals follow
while blindfolded.

It is important to keep in mind that the charting of cognitive abilities
with sensory modalities as a framework for exploration is not an empty
academic exercise. At least one contemporary theory of intelligence, albeit
based on more limited empirical evidence than the psychometric work
reviewed in this chapter, points to the complex processes indicative of
high artistic and sporting achievement, and therefore of intelligence, that
are at least as dependent on tactile and kinaesthetic abilities as they are on
higher-order cognition (Gardner, 1983). A similar claim can be made with
respect to the olfactory and gustatory abilities, since there are people with
highly developed skills in perfume detection, wine tasting, and cooking
whose expertise simply cannot be detected with traditional paper-and-
pencil tests.

The olfactory sensory modality has attracted little interest among stu-
dents of cognitive abilities working within the psychometric tradition.
Evidence from within experimental cognitive psychology suggests that ol-
factory memory is distinct from memory processes in other sensory modal-
ities, including vision and audition. In a study reported by Danthiir et al.
(2001), participants were tested with a battery of twelve psychometric tests,
four putative cognitive olfactory tasks, and one olfactory discrimination
measure. Results indicate the possible existence of an olfactory memory
factor (OM), which is structurally independent of the established higher-
order abilities (g, gv, &, and short-term acquisition and retrieval or SAR)
and unrelated to simple olfactory sensitivity. It is also unrelated to the pro-
cesses of tonal memory that are unique to auditory processes. The OM
factor is defined only by the olfactory tasks, all of which have a strong
memory component. Importantly, the tests defining this factor contain el-
ements of memory systems that are ordinarily seen as separate — that is,
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short-term and long-term memory measures. In other words, olfactory
memory appears unusual in the sense that it blurs the distinction between
long-term and short-term memory.

It appears that gustatory processes have been studied even less than
olfaction. Given the importance of food experiences in contemporary so-
cieties and high levels of expertise that can be achieved by epicures, the
paucity of research in this area is lamentable.

Over the past five years sensory abilities have also been studied be-
cause of considerable interest in decision processes and, specifically, in the
role that self-confidence plays in the situations with high degrees of uncer-
tainty. Predictions of future states of affairs (e.g., in economic forecasting,
medical diagnosis, and the like) always involve a degree of guesswork.
It is interesting that a certain amount of uncertainty always exists in psy-
chophysical measurements of performance at the threshold levels. Indeed,
psychophysical assessment has traditionally relied on measures of con-
fidence. Although somewhat outside the immediate purpose of charting
the cognitive domain, this aspect of our work provided impetus for the
study of sensory processes in modalities that would have not been studied
otherwise.

Self-confidence in sensory processes has been studied because of the
interest in two issues. First, are individual differences in self-confidence on
complex cognitive tasks related to individual differences in self-confidence
on sensory tasks? Our findings clearly indicate that the answer to this
question is positive. In other words, there is a strong, apparently general,
trait of self-confidence that is not restricted to general knowledge, percep-
tual, or nonverbal intelligence tasks (see Kleitman & Stankov, 2001; Pallier
etal., 2002; Stankov, 1998). Curiously, when cast in this light, self-confidence
in performance on sensory tasks can be seen as being related not to the
physical bases of the organism but rather to metacognition, the process
Deary (2000) would most likely want to dismiss as being too “molar.”
This is because the importance of self-confidence derives from its relation-
ship to actual performance. Some people are accurate (i.e., they are neither
over- nor under-confident) in knowing how good (or bad) their perfor-
mance is, whereas others tend to be biased in either direction. Second,
there have been claims that sensory processes are fundamentally different
from more complex processes in that, on a group level, sensory processes
tend to show under-confidence (i.e., people tend to perform better than
they think they are capable of doing) and complex processes tend to show
over-confidence. The initial enthusiasm for this conceptually interesting
distinction has evaporated since, in our work, only one type of visual task
(line length comparison) showed under-confidence; most other sensory
tasks showed over-confidence or reasonable accuracy.

Perhaps the goal of charting (i.e., description) of the cognitive sphere
is not as lofty an enterprise as the goal of reductionist interpretation (i.e.,
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explanation) of behavior. As mentioned earlier, with respect to the use of
lower-order psychological processes for the latter purpose, it is advisable
to wait at least until the charting is complete or more advanced than it is
at present. But charting by itself holds promise of being highly profitable
since it may uncover cognitive processes that have been neglected due to
the slavish adherence to the paper-and-pencil medium in psychological
testing practices.

It is interesting to contemplate that the reductionist agenda has never-
theless helped the task of charting. Thus, the underlying aim of this activity
has not been so much to understand the diversity of cognitive processes,
but rather to show that they all have the same core in the g factor. Para-
doxically, a consequence of the pursuit of reductionist goals has been a
diminution of the strength of the g factor itself due to low correlations
between lower-order processes with complex measures of intelligence.

COGNITIVE AGING IN BETWEEN CHARTING AND
REDUCTIONIST AGENDAS

Throughout most of the lifespan (until retirement age), sensory pro-
cesses and intelligence are minimally correlated. Thus, Li, Jordanova, and
Lindenberger (1998) report that among 30-50 year olds, fluid intelligence
correlates .20 with visual and .15 with auditory acuity. However, a pro-
nounced decline occurs in both sensory processes and intelligence in old
age. It was therefore natural to ask whether their relationship becomes
stronger with age and, if so, what are the nature and the cause of this
change. With respect to vision and hearing, it is generally acknowledged
following the report of Baltes and Lindenberger (1997) that the link be-
tween these two kinds of sensory functioning and cognitive processing, as
captured by the fluid intelligence tests, is about 20% stronger in the older
than in the younger segments of the population. However, their work is
based on a cross-sectional design. As is often the case in lifespan develop-
mental work, at least some longitudinal studies question the causal nature
of this relationship. For example Anstey, Luszcz, and Sanchez (2001) show
thata decline in hearing is not associated with a decline in any higher-order
cognitive function, while a decline in visual acuity is associated only with
a decline in memory, but not with a decline in verbal ability or processing
speed.

Both charting and reductionist agendas are in the background of the
current interest in the sensory—cognition links at the later stages of life.
However, an ideologically tainted distinction that mars mainstream intel-
ligence research is not as apparent in cognitive aging studies.

With respect to charting, examination of sensory processes was driven
by practical consideration of the difficulties that impede coping with ev-
eryday demands of life among the elderly. As shown by Marsiske, Klumb,
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and M. Baltes (1997), auditory and visual acuity measures are powerful
predictors of competence with basic activities of daily living and the
amount of participation in social and leisure activities. Similarly, consider-
ation has to be given to the conditions that cause accidents and therefore
injuries and perhaps even death. For example, body damage caused by
falls is a more common reason for hospitalization among the aged than
it is among younger people. Such damage can be fatal due to complica-
tions that may be a consequence of diabetes or osteoporosis, the incidence
of which is pronounced among those older than 65. The circumstances
that lead to falls and fractures implicate the sense of vision for sure but
other senses as well. These include tactile and kinaesthetic abilities and the
proprioceptive sense that provide information about body balance-gait
in addition to the information provided by the vestibular system. Thus,
the charting had to be moved into a new territory that is outside the tra-
ditional domains and, to some, still untouched by mainstream studies of
intelligence.

Anstey, Stankov, and Lord (1993) and Stankov and Anstey (1997) em-
ployed a battery of sensory tests that measured, among others, processes
linked to the detection of vibrations on the skin, the stability of upright
posture with eyes closed, the precision of movement, and the strength of
upper and lower limbs. Li et al. (1998) measured roughness discrimination,
part-whole discrimination (i.e., matching of an arc to the circle from which
the arc is excised), and tactile pressure sensitivity. Corroborating some
of the findings from mainstream research, Li et al. (1998) demonstrated
that the two discrimination tasks, being more complex, have higher cor-
relation with intelligence than tactile pressure sensitivity. The selection of
these tasks was clearly influenced by neuropsychological considerations
and was therefore focused on functions that are distinct from those empha-
sized by personnel selection issues that often drive mainstream research
in intelligence.

Most studies of the sensory—cognitive link during lifespan development
are based onlarge samples. There is, however, an indication from neuropsy-
chology that decline in olfactory ability appears linked to Alzheimer’s dis-
ease and perhaps other kinds of dementia. This certainly suggests that
aging research should expand its focus beyond the modalities studied up
until now and consider the chemical senses as well.

With respect to the reductionist accounts, Baltes and Lindenberger (1997)
and their coworkers have proposed a “common cause” hypothesis that is
supposed to account for the increased sensory—cognitive link. The hypoth-
esis states that lower-level sensory processing and high-level cognitive
functioning are both expressions of a third common factor, namely, the
efficacy of neural information processing in the central nervous system.
Since aging compromises brain efficiency, which, in turn, imparts on both
sensory and cognitive processes, performances in these two areas become
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increasingly intercorrelated. This, of course, is a plausible account. Li et al.
(1998) took pains to point out that this hypothesis, although in accord with
Galton’s ideas, differs from his account in that age acts as a mediating
factor.

Inmy opinion, the jury is still out as far as the status of the common-cause
hypothesis is concerned. While the link between sensory measures of intel-
ligence may exist in later stages of life, the actual strength of the correlation
may be open to dispute and indeed is likely to vary depending on the ac-
tual measures employed and between modalities. Furthermore, whatever
the strength of this relationship, the common-cause hypothesis needs to
be tested more thoroughly than it has been up until now. Modular hypoth-
esis that postulates a separate aging process for sensory function (periph-
eral) and a separate aging process for the cognitive function (central) is still
a serious option.

There is little doubt, however, that a strong reductionist hypothesis that
postulates a causal link between sensory processes and intelligence and
claims that decline in intelligence is caused by the decline in sensory pro-
cesses is unlikely to succeed. An attempt to have a closer look at this option
was made by Stankov and Anstey (1997). That study compared two struc-
tural equation models that differed with respect to the treatment of the
sensory variables. One model assumed that sensory variables are a part of
the structure of intelligence that had causal paths from nonability variables
of age, education, and health. The other model moved sensory measures
to the causal side under the assumption that, if sensory variables affect the
performance on cognitive tasks in the way variables like age and educa-
tion do, the fit of the latter model would be superior. In the outcome, both
models had an equally good fit to the data. This can be interpreted to imply
the lack of support for a strong reductionist position.

SENSORY PROCESSES AND PSYCHOMETRIC THEORIES
OF INTELLIGENCE

Lower-order sensory and other cognitive processes captured by elemen-
tary cognitive tasks are a part of cognition and therefore an aspect of in-
telligence. Many of them, particularly those related to modalities other
than vision, have been neglected. The primary aim of any attempt to bring
sensory processes and ECTs into structural studies of intelligence is the
completion of charting of the domain. Occasionally, as a bonus, this may
bring into focus hitherto unknown complex processes like those related
to sequential presentation of stimuli within the auditory domain, the im-
portance of olfactory memory, and new tactile and kinaesthetic processes.
All these processes are likely to have features similar to the second-stratum
factors like ¢ and g, but, in particular, they are similar to broad perceptual
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processes such as g, and g,. Some of these new processes may become a
part of the g¢ or of some other broad factor.

The study of lower-order psychological processes with the reductionist
aim in mind is untenable at present because the attempts to classify cogni-
tive processes into lower-order and higher-order have been fraught with
difficulties.

The interpretation of the hierarchical structure of human abilities that
is based on factor analysis remains as always. Part of the variance is due
to the general factor, part of it to the unique factor. Empirical studies have
also shown that very few, if any, cognitive tests measure only a general and
a unique factor. As argued by Stankov (2002a), the strength of the general
factor is weaker than its proponents are telling us. The indications are that
sensory tasks from different modalities will define factors reflective of that
modality. To be meaningful, the design of studies of intelligence has to be
multivariate. Shortcuts like having a single measure of intelligence (e.g.,
Raven’s Progressive Matrices Test) and a single ECT (e.g., a measure of
inspection time) can lead to confusion since the latter may be primarily
related to, say, the visualization process (g,) or an aspect of mental speed
(gs) and only through these to g itself.

Although at first blush it may appear that the study of ECTs and sensory
tasks is rather boring and less glamorous than some other popular areas of
study (e.g., the so-called emotional intelligence), it is unlikely that their use
in research on intelligence will diminish in the foreseeable future, if ever,
for several reasons: The study of the role of complexity in intelligence can
benefit from the delineation of the ingredient processes, biological reduc-
tionism will continue to prefer ECTs to any molar measure of intelligence,
and the outcomes of charting to date have brought into the picture several
interesting new factors and there is promise for more.
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Basic Information Processing and the
Psychophysiology of Intelligence

Aljoscha C. Neubauer and Andreas Fink

BASIC INFORMATION PROCESSING AND INTELLIGENCE

Research on individual differences in human cognitive abilities or intelli-
gence has a long history in scientific psychology. After decades of psycho-
metric research into the structure of human cognitive abilities, the last 20
to 30 years have been characterized also by attempts to analyze cognitive
components and correlates of psychometric intelligence. In this realm an
important approach has been the attempt to relate the individual speed
of information processing to psychometric intelligence (the so-called men-
tal speed approach). This approach traces back to the idea that human
cognitive or intellectual functioning might be decomposed in elementary
cognitive processes, which are assumed to constitute an important basis
of intellectual functioning. In the last two decades important progress has
been made in this field of research: In using so-called elementary cognitive
tasks (ECTs), which put only minimal requirements on the participants
and are, thus, less likely prone to differential strategy usage, dozens of
studies have provided converging evidence that shorter reaction times in
these tasks are associated with higher psychometric intelligence, indicating
a higher speed of information processing in brighter individuals.

The ECTs that have been used most extensively in this field of research
are the Hick and the inspection time (IT) paradigm (see Fig. 1). In the IT
paradigm (cf. Vickers, Nettelbeck, & Wilson, 1972) participants are tachis-
toscopically (i.e., for very short exposure durations) shown two vertical
lines of different length. Immediately after their exposure, the lines are
masked by two thicker vertical lines of equal length. Subsequently, the
participant’s task is to decide which one of the two lines is longer. A proce-
dure is employed, in which the probability of correct responses to varying

The preparation of this chapter was partially supported by grants from the Austrian Science
Foundation (Fonds zur Férderung wissenschaftlicher Forschung; FWF).
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A)

Stimulus Masking

B)

FIGURE 1. Elementary cognitive tasks for the assessment of speed of information
processing: a) inspection time paradigm, b) Hick apparatus.

stimulus exposure times (usually ranging from 10 to 200 ms) is assessed,
by which the so-called inspection time can be determined (the minimum
time required for a near-perfect, for instance, 95%-correct visual discrimi-
nation). From a meta-analysis (N > 4100) of IT-intelligence studies, Grud-
nik and Kranzler (2001) reported a mean negative correlation of r = —.30;
therefore, a short inspection time (i.e., time to discriminate the lines) is
associated with higher cognitive ability. Correcting for the effects of sam-
pling error, attenuation, and range restriction, they estimated the “true”
IT-intelligence correlation to be ¥ = —.51.

Another ECT that is frequently used in mental speed research is the
simple and choice reaction time task based on Hick’s (1952) observation of
a linear relationship between the amount of information (bits) processed
in a visual reaction time task and the performance (i.e., reaction time) of
a participant. The Hick task is employed using an apparatus consisting of
eight semicircularly arranged buttons around a so-called home button on
which the participant’s index finger of the preferred hand is placed at the
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start of a trial (see Fig. 1b). In each trial, one of the lamps above each re-
sponse button is switched on and the participant’s task is to move his/her
finger as quickly as possible from the home button to the response button
adjacent to the light. In the so-called simple reaction time task, participants
are required to respond as fast as possible to a single stimulus (o bits of
information). If a decision between two alternatives (visual stimuli) is nec-
essary, one binary decision (1 bit) is involved, when four alternatives are
presented two binary decisions (2 bit) are necessary, and so on. A review
of studies relating parameters of the Hick paradigm to psychometrically
determined intelligence is given by Jensen (1987): On the basis of 33 inde-
pendent samples comprising a total of 2,317 participants, he reported mean
correlations between —.12 and —.28 for various parameters of the Hick
paradigm; that is, a high speed in the simple and choice reaction tasks (i.e.,
shorter reaction times) is associated with a high psychometric intelligence.

Both the IT and the Hick paradigms primarily measure the speed of per-
ception and encoding of visual stimulus information. To explore the idea
that speed of memory retrieval might also contribute to human intelligence
differences (cf. Jensen, 1982), mental speed research also employs elemen-
tary cognitive memory tasks to assess the speed with which individuals
are able to scan or retrieve information from short- or long-term memory.
For example, the speed of retrieval from short-term memory (STM) is as-
sessed by means of Saul Sternberg’s (1966, 1969) memory scanning. In this
task, participants are sequentially shown a random sequence of one to six
digits, which have to be kept in STM (i.e., the memory set). After a warning
signal, participants are asked to indicate as fast as possible whether a single
digit was present in the previously shown memory set or not. An increase
in the number of elements in the memory set typically leads to a linear
increase of reaction time as more elements have to be kept in STM. On
the basis of this linear relationship between reaction time and memory set
size, the regression of reaction times on the number of items in STM can be
calculated. According to this procedure, two parameters of the Sternberg
paradigm are of special interest: First, the slope of this regression should be
indicative of the time needed for STM retrieval of a single element; second,
the intercept of this regression should indicate the duration of stimulus
encoding and motoric response processes.

Neubauer (1995, 1997) reviewed studies that focused on the relation-
ship between parameters of Sternberg’s memory scanning and psychome-
trically determined intelligence. Averaged across ten studies with a total
N of 972, the following average N-weighted correlations with intelligence
test scores were found: r = —.27 for mean reaction time, ¥ = —.35 for the
variability of reaction time, r = —.30 for the intercept, and r = —.11 for the
slope parameter of the Sternberg task.

Similarly, the speed of retrieval from long-term memory (LTM) is as-
sessed by means of Posner’s (Posner & Mitchell, 1967) letter matching
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paradigm. In this task participants are shown two letters per trial, which
are either physically the same (e.g., “AA”), semantically the same, but
physically different (“Aa”), or semantically different (“Ab”). In one condi-
tion participants judge the physical identity (PI) of the presented stimuli
by pressing a “YES”-button to stimuli of the type “aa” or “BB” or a “NO”-
button to stimuli of the type “Ab” or “Aa.” In the more complex name
identity (NI) condition, the participant’s task is to indicate whether the
presented letters are of identical name or not (e.g., answer “YES” to stim-
uli of the type “Aa” or “bB” and answer “NO” to stimuli of the type “Ab” or
“Ba”). While the PI-condition necessitates only a visual discrimination the
NI-condition additionally requires an access to highly overlearned mate-
rial stored in the LTM (i.e., the letters of the alphabet). According to Hunt’s
(1980) suggestion, the difference between the mean reaction time in the NI
and PI condition (NI — PI) should reflect the time needed for LTM retrieval.

A survey of studies, which related parameters of the Posner paradigm
to psychometrically determined intelligence, is given by Neubauer (1995,
1997). Based on a total N of 1,064 participants in 11 independent studies, he
reported an average N-weighted correlation of r = —.23 between the mean
reaction time in the PI condition and intelligence test scores and a mean
N-weighted correlation of r = —.33 between the mean reaction time in the
NI condition and intelligence test scores. The NI — PI difference, the mea-
sure for LTM retrieval, correlates also negatively with psychometrically
determined intelligence (mean r = —.27).

On the whole, the mental speed approach to human intelligence sug-
gests a robust relationship between speed of information processing in
elementary cognitive tasks and psychometrically determined intelligence;
that is, a high psychometric intelligence is associated with a fast execution
of elementary cognitive processes. The rather low (although consistent)
negative correlations between reaction times in ECTs and psychometrically
determined intelligence observed in the majority of studies (up to —.30, or
at best —.40) gave several authors reason to conclude that the speed of
information processing in single ECTs cannot explain more than 10% of
variance in intelligence tests (see, e.g., Hunt, 1980; Stankov & Roberts,
1997). However, most of the critics ignore the fact that the relatively low
RT-intelligence correlations are partially due to the homogeneity of the
samples tested; about 9o% of the studies in this field of research used sam-
ples of university or college students. As shown in some recent studies
conducted in our own laboratory (Neubauer & Bucik, 1996; Neubauer &
Knorr, 1997, 1998) much higher correlations — even between single ECT pa-
rameters and psychometrically determined intelligence — can be observed
(of about —.50) when using more representative or heterogeneous samples
with respect to the distribution of intellectual ability (cf. also Vernon, 1990).

In addition to this, when a comprehensive test battery composed of dif-
ferent ECTs is used, e.g., an ECT battery composed of Sternberg’s memory
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scanning, Posner’s letter matching, and Lindley and Smith’s (1992) coding
test (see Neubauer & Knorr, 1998), it is even possible to obtain multiple cor-
relations up to R = .77, indicating that almost 60% of intellectual variance
can be accounted for by mental speed.

Critics of the mental speed approach have also emphasized the role
of high-level cognitive processes and prefer top-down explanations of
the speed-intelligence relationship (rather than bottom-up explanations):
Brighter individuals might be more strongly motivated to perform quickly
in RT tasks, they might be faster in understanding the task instructions,
or they might devote more attentional resources to the elementary cogni-
tive task. These and other top-down explanations have been empirically
tested in a series of studies (for a review see Neubauer, 1995, 1997; cf.
also Deary, 2000), for example, by controlling for the level of attention, by
systematically varying motivation (e.g., using incentives or feedback on
reaction times), by varying instructions, or by allowing deliberate practice
on the reaction time task. However, most of these studies found no em-
pirical support for these alternative interpretations of the RT-intelligence
relationship; therefore, it seems not unreasonable to attach importance to
so-called bottom-up explanations, which originate from the idea that this
relationship must by caused by one or more physiological properties of the
human central nervous system.

PHYSIOLOGICAL CORRELATES OF HUMAN INTELLIGENCE

When trying to explain this relationship between speed of information pro-
cessing and psychometrically determined intelligence by means of central
nervous system characteristics, some proponents refer to the concept of
neural efficiency (e.g., Vernon, 1993) — a concept that assumes that more
intelligent individuals use their brains more efficiently when engaged in
cognitive task performance. But what is high neural efficiency? Research
on the basic processes underlying efficient performance in a variety of
cognitive ability or intelligence tests — especially on the role of speed of
information processing as a basic constituent in individual differences in
human intelligence — has taken a conspicuous turning point. Starting in
the late 1960s, the first research efforts were undertaken to find a physio-
logical (biological) basis for individual differences in cognitive ability. In
the first stage of this physiologically oriented research on human intelli-
gence differences, most of the studies focused — in direct conjunction to
the mental speed research tradition — on several speed parameters of the
human electroencephalogram (EEG), for example, the latency of different
components of the event-related or evoked potential (EP).

Although the expected negative EP latency—intelligence relationship has
been observed in a multitude of studies (for reviews see Deary & Caryl,
1993; Neubauer, 1995), many other studies showed no such relationship.
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Therefore, the relation of the EP parameter to psychometrically determined
intelligence remains unclear. This might at least partly be due to the weak
stability (i.e., low test-retest reliability) of many physiological measures
as well as to the great number of experimental and technical variations in
EP measurement (sensory modalities, stimulus intensity and timing, elec-
trode positioning, etc.). In addition to this, most of the studies used only a
very small number of cortical derivations, and, therefore, it seems unjusti-
fiable to generalize the findings, that is, to assume similar EP-intelligence
relationships for different cortical areas.

Another physiological approach is the measurement of the so-called
peripheral nerve conduction velocity (PNCV) — a measure for the speed
of conductance in the peripheral nervous system, which involves no ob-
vious cognitive activity. Similar to the measurement of EP latencies, this
approach alsohas roots in the mental speed approach to human intelligence
differences, which underpins the role of speed of information processing as
a basic constituent of human intelligence differences. However, attempts
to relate PNCV to psychometrically determined intelligence have proven
unsuccessful in a series of studies (e.g., Barrett, Daum, & Eysenck, 1990;
Barrett & Eysenck, 1992; Reed & Jensen, 1991, 1992; Wickett & Vernon,
1994). Only one study (Vernon & Mori, 1992) reported empirical evi-
dence in favor of the expected positive relationship between PNCV and
intelligence.

However, in contrast to these comparatively unsuccessful attempts in
relating EP and PNCV parameters to psychometrically determined intelli-
gence, other physiological approaches have had more promising results. A
method thathasbeen used in a variety of studies dealing with physiological
correlates of human intelligence differences is the measurement of the glu-
cose metabolism rate (GMR) of the brain using positron emission tomog-
raphy (PET). Like every other human organ, the brain consumes energy,
especially in cognitively demanding situations, and this consumption of
energy is compensated by metabolizing glucose. In measuring the GMR of
the brain, individuals are injected with a metabolic tracer and the effects
of cognitive activity on the GMR of different brain regions can be analyzed
during a so-called uptake phase, a period of several minutes during which
the metabolic tracer is taken up by the brain. Finally, the individuals are
moved to the PET scanner where the GMR of the brain is measured.

In using this measurement method, mostly negative relationships be-
tween GMR and psychometrically determined intelligence have been ob-
served: brighter individuals displayed a lower GMR during cognitive task
performance than did lower IQ individuals. For instance, Haier et al. (1988)
observed that brighter individuals displayed less glucose metabolism dur-
ing performance of Raven’s Advanced Progressive Matrices (IQ-GMR cor-
relations between —.44 and —.84 for various brain regions). Similarly, Parks
et al. (1988) presented a word fluency test during the uptake phase and



74 Aljoscha C. Neubauer and Andreas Fink

found substantial negative correlations between GMR and test perfor-
mance (r between —.50 and —.54). In further studies Haier et al. (1992a, b)
replicated this finding of a more efficient use of the brain in brighter indi-
viduals. In these studies participants were required to perform and practice
a complex computer game (Tetris) during the uptake period. The authors
confirmed the hypothesized negative intelligence-GMR relationship (—.68
for Raven’s Advanced Progressive Matrices and —.43 for the Wechsler
scales). Additionally, they found the largest glucose metabolism decreases
(resulting from increasing practice on the task) in individuals who im-
proved their Tetris performance after practice the most — suggesting that
practice or learning may result in decreased use of extraneous or inefficient
brain areas.

However, even if the PET method facilitates the analysis of the activity
of the whole brain during cognitive task performance, it has the disadvan-
tage of a rather low temporal resolution. The PET scan only shows cumu-
lative effects of brain functions over longer uptake phases, during which
a metabolic tracer (i.e., a radioactive substance) is taken up by the brain
(usually in the range of minutes). A more fine-grained temporal analysis of
brain activation, which would be necessary when studying activation dur-
ing the performance of an elementary cognitive task, cannot be obtained
with the PET method.

To analyze phasic (i.e., short-lasting) changes of cortical activation dur-
ing the performance of cognitively demanding tasks, we used another
psychophysiological measurement method, the so-called event-related
desynchronization (ERD) in the human EEG. The ERD method, originally
proposed by Pfurtscheller and Aranibar (1977; see also Pfurtscheller &
Lopes da Silva, 1999), is based on the well-known phenomenon of a block-
ing or desynchronization of rhythmic EEG background activity within the
alpha band (from 8 to 12 Hz). In a series of trials of a cognitive task, the
EEG background activity is measured in a reference interval (R; not involv-
ing any cognitive activity) as well as in an activation interval (A), during
which individuals process stimulus information (immediately before par-
ticipants’ response, see Fig. 2). The ERD is then quantified by calculating
the percentage of decrease of power in defined frequency bands (mostly
alpha bands) from the reference (R) to the activation interval (A) using the
formula %ERD = [(R- A)/R] x 100. Thus, changes in EEG alpha power are
given as a percentage of the reference power, with positive %ERDs for de-
creases of alpha power (reflecting a cortical activation) and with negative
%ERDs for increases of alpha power (indicative of a cortical deactivation).

As we are primarily interested in psychophysiological correlates of el-
ementary cognitive processes (as assessed by elementary cognitive tasks)
that are less likely to permit alternative interpretations as compared to
more complex tasks (e.g., assuming individual differences in strategies dur-
ing complex task performance), the ERD method seems especially suited
here, since it allows the study of phasic changes of cortical activation (by
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providing a very fine-grained temporal resolution of cortical activation).
Thus, we employed the ERD method to analyze spatio-temporal patterns of
cortical activation during performance of several well-known elementary
cognitive tasks.

In a first study (Neubauer, Freudenthaler, & Pfurtscheller, 1995), we an-
alyzed spatio-temporal patterns of cortical activation during performance
of the well-known sentence verification test (SVT; Carpenter & Just, 1975;
Clark & Chase, 1972) — which correlates substantially with psychometric
intelligence (e.g., Neubauer & Freudenthaler, 1994). In this test participants
are shown a simple sentence on the computer screen (e.g., “star is above
plus”) followed by the presentation of a picture showing the star above
the plus or the inverse constellation. Participants were required to indicate
whether the sentence was a true or false description of the picture. In an-
alyzing the extent of ERD in the EEG during performance of the SVT, we
found empirical evidence in favor of the neural efficiency concept of human
intelligence: Lower IQ individuals were more likely to display a compar-
atively unspecific and stronger cortical activation as compared to brighter
individuals, whereas the latter were more likely to display a more specific
(i.e., more focused) cortical activation, presumably restricted to those cor-
tical regions required for task performance, resulting in less overall cortical
activation than displayed by lower IQ individuals.

In a second study (Neubauer, Sange, & Pfurtscheller, 1999), we tried
to replicate these findings with another well-known elementary cogni-
tive task, Posner’s letter matching (Posner & Mitchell, 1967). As already
mentioned, in the Posner task participants are shown two letters in each
trial, which are physically the same (e.g., “AA”), semantically the same
but physically different (“Aa”), or semantically different (“Ab”). In the
first condition participants simply judge the physical identity (PI) of the
presented stimuli (i.e., visual discrimination), whereas in the more com-
plex name identity (NI)-condition, which additionally requires an access
to highly overlearned material stored in the LTM (i.e., the letters of the al-
phabet), the participant’s task was to judge the semantical or name identity
of the stimuli.

As depicted in Figure 3, the findings of Neubauer et al. (1999) are again
in line with the neural efficiency hypothesis. We found brighter individ-
uals, who scored high on Raven’s Advanced Progressive Matrices (APM;
Raven, 1958), again displaying a more focused cortical activation (resulting
in a lower total cortical activation) as compared to lower IQ individuals
(i.e., lower APM scores). Most interestingly, these 1Q group differences
were much more prominent in the more complex NI condition; in the rela-
tively simple PI condition only marginal and nonsignificant IQ group dif-
ferences with respect to the level and topographical distribution of cortical
activation were observed. It seems that for a corroboration of the neural effi-
ciency phenomenon, obviously a certain level of task difficulty (as in the NI
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FIGURE 3. ERD maps separately for the APM low and APM high group. Black and

dark gray areas in these maps symbolize a large extent of ERD; brighter areas depict
no or only weak ERD.

condition) is required, whereas the PI condition is possibly too simple to
allow for group differences.

To more thoroughly study this latter issue, we further investigated the
influence of task complexity on the relationship between cortical acti-
vation patterns and intelligence. For the latter variable we additionally
distinguished between fluid and crystallized intelligence (Neubauer &
Fink, 2003). We employed a modified version of Stankov’s (2000; cf. also
Stankov & Crawford, 1993; Stankov & Raykov, 1995) Triplet Numbers test,
which consists of five increasingly complex conditions differing with re-
spect to the number of mental steps that are required to perform success-
fully the given task. Participants are simultaneously shown three one-digit
numbers on a computer screen (e.g., “3 9 4”) and their task is to indicate
(by pressing either the “YES” or “NO” buttons) whether these digits match
a specific rule or not (e.g., “Is the first digit the largest?”). The five increas-
ingly complex Triplet versions differ with respect to the instructions given
to the participants, e.g., “Is digit 5 contained within the triplet?” in Triplet 1
or “Is the second digit the smallest and an even number or is the third digit
the largest and an odd number?” in the most complex Triplet 5 condition.

Interestingly, the task complexity had only a general effect on cortical
activation (more complex tasks evoking stronger activation), but this effect
did not interact with the intelligence level.

Rather, the most interesting finding of the (Neubauer & Fink, 2003)
study is that the distinction between fluid and crystallized intelligence dif-
ferentially affects physiological differences between individuals low ver-
sus high in cognitive ability. The neural efficiency phenomenon seems to
be more strongly related to individual differences in fluid intelligence than
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FIGURE 4. ERD maps for both g¢ group (gf low vs. g high) and sexes (male vs.
female).

to crystallized intelligence. Moreover, males and females seem to produce
different patterns of cortical activation. In Figure 4 the ERD maps are plot-
ted separately for both ability groups (i.e., high fluid intelligence g vs.
low fluid intelligence) and sexes. Most interestingly, the male sample was
more likely to show activation patterns in line with the neural efficiency
hypothesis (less activation in brighter than in less intelligent individuals),
whereas the females showed no significant intelligence-related differences
with respect to cortical activation patterns.

However, the finding that males and females display different patterns
of cortical activation (as assessed by means of the ERD method) is not
exclusively restricted to the (Neubauer & Fink, 2003) study. Similarly, in
Neubauer, Fink, and Schrausser (2002) we found male and female brains
again displaying different activation patterns during cognitive task perfor-
mance. Here, we tried to analyze the neural efficiency phenomenon with
respect to possible effects of stimulus or material content. Instead of just
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FIGURE 5. Mean %ERD in the verbal, numerical, and figural letter matching task
separately for both sexes and IQ groups.

using one type of stimulus material, we used three variants (i.e., verbal,
numerical, and figural-spatial) of Posner’s letter matching test. This was
done because most studies within the mental speed approach to human in-
telligence employed the elementary cognitive tasks in their classical form,
for example, using pairs of letters in the Posner paradigm or digits in
Sternberg’s memory scanning task. Possible influences of content or mate-
rial specificity factors have been largely ignored in this research tradition.
This might be problematic since differences in physiological parameters
might not only be traced to differences in cognitive task requirements but
also to a topographic specialization of the cortex for certain types of stimu-
lus material (e.g., specialization of the left hemisphere for verbal material).
Therefore, we employed ECTs consisting of verbal, numerical, and figural
stimulus elements. In addition to this, we endeavored to analyze possible
sex differences with respect to cortical activation patterns.

Our findings (Neubauer et al., 2002) can be summarized as follows:
First, we replicated and corroborated existing findings of a more efficient
use of the cortex (resulting in a lower total cortical activation) in brighter
as compared to less intelligent individuals (i.e., neural efficiency hypoth-
esis). Second, as illustrated in Figure 5, we found both sexes displaying
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different patterns of cortical activation when comparing activation during
performance of the verbal, numerical, and figural-spatial Posner variant.
Most interestingly, both sexes displayed the expected activation patterns
(i.e., neural efficiency patterns) in that domain in which they usually per-
form better — the females in the verbal Posner task and the males in the
figural-spatial Posner task.

Summarizing the empirical work on physiological correlates of human
intelligence, we can conclude that there is sound evidence for more in-
telligent individuals displaying a higher neural efficiency as indicated by
less and topographically more focused cortical activation (for converging
evidence from studies using other EEG methods, cf. e.g., Jausovec, 1996;
Vitouch et al., 1997).

However, as Sternberg and Kaufman (1998) noted, this relationship does
not necessarily imply the causation neural efficiency — intelligence, which
is more or less implicitly assumed by most researchers in this area. It
would also be conceivable that brighter subjects have to expend less ef-
fort when solving cognitive tasks and this would account for their lower
metabolism/cortical activation. As the presently available empirical evi-
dence on the neural efficiency-intelligence relationship is purely correla-
tional this alternative explanation cannot be ruled out. It should be noted
that correlations cannot only be explained in an A — B or B — A direction;
rather a third variable C could drive individual differences in A and B.
Actually there is no experimental evidence that could inform us about the
direction of causation. Considering that both neural efficiency and human
intelligence are based on the same biological substrate (i.e., the brain), it is
readily conceivable that the relationship is caused by one or more funda-
mental (e.g., anatomical) properties of the brain.

BIOLOGICAL BASIS OF HUMAN INTELLIGENCE: THREE HYPOTHESES

What might be such a general property of the brain? As Britt Anderson
(1995) argued, “From neuropsychological data, it can be shown that no
single brain region or psychological process is essential for normal intel-
ligence” (p. 602), rather “the mathematical entity g is the consequence of
therebeing a biological feature with a general influence on cognitive perfor-
mance” (p. 603). He proposed (and analyzed) six hypotheses that assume
individual differences in

brain size

nerve conduction velocity (myelination)
neuron number

dendritic arborization

synapse number

synaptic efficiency

SAR AN ol L



Basic Information Processing and the Psychophysiology of Intelligence 81

Most of these anatomical features cannot be determined reliably and
validly in the living human brain; therefore hypotheses on biological fea-
tures actually are more or less plausible hypotheses. Three hypotheses are
elaborated in more detail in the following discussion.

The myelination hypothesis (Miller, 1994) starts from the following as-
sumptions: As already mentioned, higher psychometric intelligence is as-
sociated with shorter reaction times in elementary cognitive tasks and with
shorter latencies in the evoked potential. Higher IQ is correlated with larger
brain size, with higher neural efficiency (as shown by less cortical glucose
metabolism under cognitive load and less and more strongly focused cor-
tical EEG activation), and, finally, with a higher nerve conduction velocity.

Stronger myelination of axons in the brain produces a higher speed of
neural conduction, less leakage of signals, less “cross-talk” errors between
neurons, and anatomically larger brains.

In addition, there is converging evidence regarding the development of
intelligence, processing speed, and myelin with age. Intelligence increases
during childhood and decreases in old age. Reaction times show a simi-
lar development; they decrease during childhood indicating an increase
of speed of processing and increase in old age (i.e., slowing of process-
ing speed). Similar findings have been obtained for the P300 latency of
the evoked potential, and we also know that the process of brain myeli-
nation develops during childhood whereas demyelination takes place in
old age. By integrating all these findings, Miller concluded that a stronger
myelination might be an anatomical cause for higher intelligence.

A second approach, the neural pruning hypothesis of human intelligence,
has been put forward by Richard Haier (1993). He started from the obser-
vation by Huttenlocher (1979) that the number of synapses in the brain
increases rapidly during the first five years of life and then until the early
teen years around 11 or 12 a dramatic decrease in synaptic density can be
observed; it is assumed that during that time redundant synaptic connec-
tions are eliminated, a process termed neural pruning. Empirical evidence
for this phenomenon, however, is only indirect. Cerebral glucose use in-
creases in the first five years and displays a decrease afterward, resulting in
the finding that glucose use in five-year-olds is twice that of normal adults
(as synapticactivity requires energy consumption, this finding could reflect
the process of increase and subsequent decrease of synapses).

Additional evidence relates synaptic density to the phenomena of men-
tal retardation: Higher synaptic densities have been found in mentally
retarded persons (postmortem analyses); in living subjects higher glucose
use has been found in those with mental retardation, Down’s syndrome,
and autism (cf. the references provided by Haier, 1993). From these findings
Haier derived the hypothesis that a failure in neural pruning could lead
to mental retardation or lower cognitive ability, whereas an overpruning
(i.e., an extremely efficient pruning process) would lead to giftedness.
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Finally, the most recent hypothesis advocates the growth of dendritic
trees and axon branches as a neural basis underlying individual differ-
ences in human intelligence. In explaining the nature of the general factor
of intelligence, Garlick (2002) presupposes some kind of neural plasticity
of the brain that paraphrases the brain’s ability to adapt to environmental
stimuli. He bolsters his presumption with neurophysiological data sug-
gesting that a neural system will exhibit both axonal and dendritic plas-
ticity; that is, neurons will change their connections with other neurons in
response to environmental stimulation. In this context Garlick also focuses
on the ontogenetic development of the brain (i.e., increase of cells, axons,
and synapses) and argues that “the development of intelligence over child-
hood is due to this long-term process whereby the brain gradually alters
its connections to allow for the processing of more complex environmental
stimuli” (p. 120).

Garlick (2002) further argues that a brain which is more able to adapt
its connections to environmental stimuli (i.e., the more “intelligent” brain)
might also show other characteristics. With this in mind, he explains in-
dividual differences in speed and neural efficiency by assuming that a
neural network consisting of stronger and more appropriate connections
(the “fine-tuned” neural network) would also be able to process even
relatively simple tasks (e.g., elementary cognitive tasks) at a faster rate.
Moreover, a fine-tuned neural network that is able to differentiate be-
tween different inputs might also be able to selectively activate the ap-
propriate relations in the brain. This might be the reason why brighter
individuals usually display shorter reaction times in a variety of cog-
nitive tasks or why the brains of brighter individuals are less active
when performing cognitively demanding tasks (i.e., the neural efficiency
hypothesis).

A BRAIN AREA FOR INTELLIGENCE?

Beneath these general properties of the brain (myelination, neural prun-
ing, and neural plasticity) that might be treated as more or less plausible
hypotheses for individual differences in the level of general intelligence,
one might also look for a special brain area as a neural basis of intelligence.

Presently, from the viewpoint of the general cognitive neuroscientist
the answer to this question seems straightforward: the frontal lobe. PET
and fMRI studies comparing spatial patterns of cortical activation during
performance of (highly g-loaded) intelligence, especially fluid reasoning
tasks, as compared to other cognitive tasks (with low g-loadings) found
an increased involvement of the frontal cortex for the former tasks (Prab-
hakaran et al., 1997; Duncan et al., 2000). The frontal lobe receives inputs
from all major sensory afferent systems (e.g., thalamus, hypothalamus)
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and is believed to be responsible for many important aspects of human
behavior, in particular for the so-called higher cognitive functions such as
planning, goal-directed behavior, or complex problem solving. The pre-
dominant role of the frontal brain in this domain has been underpinned
by neuropsychological data which congruently suggest that frontal lobe
lesions are associated with impairments or dysfunctions in a variety of
cognitive processes such as planning, selective attention, decision making,
goal-directed behavior (i.e., scheduling processes in complex task perfor-
mance), or monitoring of ongoing activity that all constitute important pre-
requisites for complex task performance (cf. Duncan, Burgess, & Emslie,
1995; for recent reviews see Fiez, 2001; Gabrieli, 1998; Kessels et al.,
2000).

As the brain regions activated during performance of highly g-loaded,
fluid reasoning tasks (like Raven’s Progressive Matrices) largely match
those found in neuroimaging working memory studies (cf. Smith &
Jonides, 1999), we can conclude that performance in fluid reasoning tasks
is mediated by a composite of different working memory abilities. This
finding is not surprising in view of the close relationship between working
memory capacity and reasoning (Kyllonen & Christal, 1990).

Itshould be emphasized, however, that the role of the frontal lobe in fluid
reasoning has been only studied from the perspective of a general neuro-
scientist, that is, it has been demonstrated only by employing comparisons
of tasks. What we need is research on the “differential perspective” show-
ing that subjects high in fluid reasoning ability (or in g) display differential
involvement of the frontal cortex than subjects low in such abilities.

If that could be demonstrated, what could we then conclude about the
biological “basis” of human intelligence? Is it the “quality” of the frontal
cortex or is it a general brain property like myelination, synapse number,
or dendritic arborization?

Presently, a clear-cut answer to this question is not possible. Maybe the
answer is not “either or” but rather “as well as”: On the one hand, the role
of the frontal lobe in areas of intellectual functioning seems to be attrib-
utable mainly to the working memory involvement of the intelligence
tasks. On the other hand the other important elementary cognitive basis
for human intelligence, namely speed of information processing — as well
as neural efficiency findings — can probably more plausibly be explained
by a general property of the brain like myelination, synapse number, or
dendritic branching. Just as the quality of a performance of a symphony is
surely dependent upon the quality of the conductor as well as the quality
of the musicians in the orchestra, human cognitive ability might likewise
be a product of the efficiency of the frontal brain (as the “conductor” of the
cortex) as well as the performance of the neurons, synapses, axons, and
dendrites (as the musicians in the orchestra).
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The Neural Bases of Intelligence

A Perspective Based on Functional Neuroimaging

Sharlene D. Newman and Marcel Adam Just

INTRODUCTION

The study of intelligence has provided two major and enduring contribu-
tions to the understanding of human thought: a comprehensive charac-
terization of human intelligence and a method to measure the variation
in intelligence among individuals. These contributions have been based
almost exclusively on behavioral measures of intelligence, using primar-
ily paper-and-pencil tests. The development of brain imaging technology
at the end of the twentieth century provided the ability to measure brain
activity in individuals during the performance of tasks like those that com-
pose intelligence tests. These brain imaging measures have the potential
of providing a new and possibly more comprehensive view of intelligence
as well as providing insight into the basis of individual differences. In this
chapter, we sketch the very beginnings of this approach to intelligence
that may provide a new comprehensive characterization of intelligence
enriched by insights from recent brain imaging findings. This novel ap-
proach may also provide suggestions of methods to measure individual
differences.

Intelligence is difficult to define, and in fact, there is little consensus
among scientific researchers as to what is meant by intelligence (Jensen,
1998). A general definition provided by Sternberg and Salter (1982) that
we will use is “goal-directed adaptive behavior.” Intelligent behavior is
adaptive in that it changes to confront and effectively meet challenges.
Because it is not enough for intelligent behavior to simply be adaptive,
it is also thought to be goal-directed, or purposeful. However, it is the
adaptive nature of intelligence that will be the primary focus of this
chapter.

Spearman situated g at the apex of a hierarchy of abilities. g represents
an individual’s general problem-solving skill, accounts for a person’s per-
forming well on a variety of cognitive tasks, and is sometimes referred to
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as fluid intelligence or gs. According to Spearman, one of the factors that
determines g is “mental energy,” which “enters into the measurement of
ability of all kinds, and is thought to be constant for any individual, al-
though varying greatly for different individuals” (Spearman, 1927, p. 411;
Jensen, 1998). Because very little was known about brain function in the
1920s, Spearman was unable to elaborate further as to what corresponded
to mental energy. However, our proposal below implicitly includes an en-
ergy facet.

The conventional psychometric study of behavioral performance has
been accompanied by attempts to correlate individual differences in intel-
ligence with biological measures. In some sense these attempts have been
in search of a definition of mental energy. For example, for over a hundred
years researchers have been examining the correlation between head cir-
cumference (a proxy for brain size) and intelligence measures, generally
suggesting that the larger the brain, the more intelligent the individual. Al-
though many studies have found a modest correlation, these studies have
been quite controversial (for a review see Van Valen, 1974; Jensen & Sinha,
1992) and have not provided insights into either the nature of intelligence
or the measurement of individual differences.

In the 1980s, Jensen hypothesized that it was not necessarily the size
of the brain but the speed of processing that was central to intelligence,
showing a relationship between reaction time and intelligence (Brody,
1992, p. 56; Vernon, 1992). This relationship suggested that the charac-
teristics of the nervous system determine reaction time, and that individu-
als whose nervous systems function more effectively and rapidly develop
more complex intellectual skills. Electrophysiological recordings (ERP) of
electrical activity measured on the scalp have also shown a relationship
between neural processing characteristics and intelligence. Studies using
ERP have revealed consistent correlations with intelligence (Jensen, 1998;
Jensen & Sinha, 1992) and have been used to measure individual differences
both in the normal population (McGarry-Roberts, Stelmack, & Campbell,
1992; King & Kutas, 1995; Vos & Friederici, 2003) and those with psychiatric
and neurological dysfunctions (John et al., 1994). The electrophysiological
approach attempts to relate the electrical activity of the brain to the ongoing
cognitive information processing. For example, this approach has found
that individuals who are extreme in their ability (e.g., good vs. poor com-
prehenders; King & Kutas, 1995) have distinguishable electrical signatures
during a reading comprehension task. This approach has been successful in
showing that there are electrophysiological differences that are correlated
with individual differences in performance, but the electrical measures are
indirect and not related to a comprehensive theory of intelligence.

In this chapter we present a theory of neural processing that is de-
rived from the use of functional neuroimaging, particularly functional
MRI (fMRI). Magnetic resonance imaging, primarily fMRI and possibly
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diffusion tensor imaging (DTI) in the future, has the potential to provide a
clearer characterization of the neural bases of intelligence. A key contribu-
tion of fMRI is its ability to provide information about several important
properties of the large-scale neural networks that underlie cognition. These
properties include the specification of the set of brain regions that are in-
volved in a given task; the temporal profile of the activation, or a reflection
of the neural processing time course; and the degree of synchronization be-
tween pairs of activated regions, which reflects the functional connectivity
between regions.

The theory presented in this chapter provides an initial account for g,
or fluid intelligence. Intelligence is born out of networks of cortical ar-
eas; therefore, the investigation of the behavior of these large-scale cortical
networks may lead to an explanation of individual differences in ability.
The major proposal of this chapter is that how well the neural system can
adapt to changes in the environment will affect the quality and efficiency
of its processing, thereby constituting a major source of individual differ-
ences. The theory is composed of a set of operating principles for cortical
computation put forth by Just and Varma (2003):

1. Energy is consumed during the performance of cognitive tasks and
each cortical area has a limited resource capacity. This principle has
direct implications for individual differences in intelligence. First
it suggests that the amount of resources available or the resource
capacity within the neural system may vary across individuals. Sec-
ond, the amount of resources required to perform a task may differ
across individuals due to variations in efficiency.

2. The topology (cortical composition) of neurocognitive networks as-
sociated with a given task changes dynamically, adapting itself to the
demands of a given task. Therefore, the efficiency with which this
topological change occurs may contribute to individual differences
in task performance.

3. Cortical regions function collaboratively to perform tasks. Variation
in the degree of synchronization or efficiency of the communication
between regions may contribute to individual differences in task
performance.

4. The quality of the white matter tracts connecting cortical areas may
also affect processing speed. The variation in the degree or qual-
ity of the anatomical connections between processing regions may
contribute to individual differences in task performance.

These principles suggest possible sources of individual differences in
intelligence. The remainder of this chapter further explores these properties
and provides citations of supporting experimental data.
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PROCESSING CAPACITY

Thinking is biological work that requires resources and is thus constrained
by their availability. In any biological system, there is an upper limit on
resource availability. Certainly there are upper bounds on thinking, such
that one can do only so much thinking per unit time. It turns out to be help-
ful to consider such limitations as resource availability. Tasks that attempt
to impose a load greater than the maximum that the resources permit will
produce performance that is errorful, slow, or incapable of meeting some
task requirement — deteriorations consistent with decreased resources.
This phenomenon is evident in the differences in cognition observed as
a function of individual differences in working memory capacity (Just &
Carpenter, 1992).

Recent neuroimaging research has provided extensive support for
the resource consumption perspective. The amount of cortical activation
within a given region increases with the computational demands that are
placed on theregion, as demonstrated in several types of cognitive tasks, in-
cluding sentence comprehension (Just etal., 1996; Keller, Carpenter, & Just,
2001; Roder et al., 2002), working memory (Braver etal., 1997; Rypma et al.,
1999), and mental rotation tasks (Carpenter et al., 1999; Just et al., 2001).
For example, in language comprehension, the volume of fMRI-measured
cortical activation in both Broca’s area and Wernicke’s area has been shown
to increase with linguistic complexity of the sentence being comprehended
(Just et al., 1996). These findings indicate that as a task places additional
computational demands on a cortical region, it consumes more resources,
eliciting greater fMRI-measured activation.

One of the implications of the resource consumption approach is that
individuals may differ in resource availability and/or efficiency. In other
words, those with above-average performance may either have a greater
computational capacity or use the available resources more efficiently or
both. Evidence lends support to the efficiency hypothesis: several PET
studies have reported negative correlations between psychometrically
measured abilities and the volume of cortical activation produced by tasks
that draw upon these abilities (Just, Carpenter, & Miyake, 2003; Haier et al.,
1988; Parks et al., 1988, 1989; Newman et al., 2003). Reichle, Carpenter, and
Just (2000) conducted a fMRI study that tested this hypothesis. The study
examined the relation between individual differences in cognitive ability
(verbal or spatial ability) and the amount of cortical activation engendered
by two strategies (linguistic vs. visual-spatial) in a sentence—picture ver-
ification task. The study showed that the fMRI-measured activation was
correlated with behaviorally assessed cognitive abilities in the two pro-
cessing domains. The direction of the correlation is consistent with the idea
that higher ability individuals use their resources more efficiently: higher
ability individuals showed less fMRI-measured activation than did less
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proficient individuals. Specifically, individuals with better verbal profi-
ciency (as measured by the reading span test) had less activation in Broca’s
area when they used the verbal strategy, while individuals with better
visual-spatial proficiency (as measured by the Vandenberg, 1971, mental
rotation test) had less activation in the left parietal cortex when they used
the visual-spatial strategy (see Fig. 1).

While several studies have shown that high ability individuals tend
to exhibit less neural activation than less proficient individuals, two re-
cent studies have revealed the opposite trend in areas associated with the
control of attention (Osaka et al., 2003; Gray, Chabris, & Braver, 2003). In
both studies, high ability individuals (defined in terms of either a higher
listening span score or greater g) performing attention-demanding tasks
revealed more activation in the anterior cingulate cortex than did less pro-
ficient individuals. In the Gray et al. (2003) study, a positive correlation
was found between general fluid intelligence, ¢ s, and the activation levels
within three a priori regions thought to be associated with attention (lat-
eral prefrontal cortex, dorsal anterior cingulate, and lateral cerebellum).
However, negative correlations between activation levels and g s were still
found in regions outside the a priori search space.

To summarize, these studies demonstrate the adaptation of individual
brains to the magnitude of the computational load. Many studies show that
the amount of cortical resources consumed, as measured by fMRI, increases
as a function of task demand, regardless of ability level. A second set of
studies cited indicate less activation (i.e., resource consumption) among
high ability individuals, suggesting that highly proficient individuals use
their resources more efficiently than do less proficient individuals in doing
the central cognitive computations. Finally, the two studies discussed that
were particularly attention-demanding indicate that the lower resource
consumption in higher performing individuals is not a global difference.
Instead, there may be attentional control mechanisms that are more ac-
tive in higher performing individuals. Together, these results show that

FIGURE 1. Therelation between visual-spatial skill (as measured by the Vandenberg,
1971, mental rotation task) and the volume of cortical activation generated in the
left (Panel A) and right (Panel B) parietal regions of interest (ROIs), as a function
of gender. The best-fitting regression lines indicate that visual-spatial skill was
negatively correlated with activation volume in both the left (r = —.74) and right
(r = —.61) hemispheres. Panels C and D show the relation between individual
differences in verbal skill (as measured by the Daneman & Carpenter, 1980, reading
span task) and the volume of cortical activation generated in the left (Panel C) and
right (Panel D) inferior frontal ROISs, as a function of gender. As the best-fitting
regression lines indicate, verbal skill was negatively correlated with activation
volume in the left hemisphere (r = —.49), but not the right (r = .16). (Adapted
from Reichle, Carpenter, & Just, 2000.)
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the resource consumption rate is related to the individual differences in
ability.

MALLEABILITY OF PROCESSING NETWORKS

Intelligent responding at the cortical level must include the ability to arbi-
trarily map inputs and outputs (Garlick, 2002). At the large-scale cortical
network level, this suggests that the network of cortical areas activated in
a given task — its composition and topological pattern of collaboration —is
neither structurally fixed nor static. Rather, it varies dynamically during
task performance. The previous conception of the neural basis of intelli-
gence was that some fixed volume of brain tissue in a fixed set of brain
areas (i.e., a fixed hardware infrastructure) is used to perform a particular
task, like mental rotation or reasoning. According to the dynamic view
we advocate, the “underlying hardware” is a moving target, changing not
only from one type of stimulus item to another, but also from moment to
moment during the processing of a given item.

At least two circumstances may necessitate a dynamic change in the
neural underpinnings of a cognitive task: 1) changes in the availability of
cortical resources and 2) fluctuations in the computational demands of a
task. As the resource pool of an area with a given set of specializations is
exhausted, some overflow of its functions migrates from a more special-
ized area to less specialized areas. Although there is a typical set of areas
activated in a given type of task, additional areas can become activated
if the task is made significantly more demanding. For example, when a
sentence comprehension task is made progressively more difficult by in-
creasing the structural complexity of the sentences, activation in the right
hemisphere homolog of Wernicke’s area (left posterior superior temporal
gyrus) systematically increases from a negligible level to a substantial level
(Just et al., 1996). One of the sources of individual differences in cognition
may be the flexibility with which additional regions are recruited.

The second situation that may necessitate dynamic self-assembly of
a large-scale cortical network is a fluctuation in the computational de-
mands of a given task. The dynamic assembly of neurocognitive networks
is incremental or continuous, not all-or-none. This provides for just-in-
time, as-needed, neural support for cognitive processing. This principle
is demonstrated in a study of verbal reasoning conducted by Newman,
Just, and Carpenter (2002). There, two conditions were presented that var-
ied the location of the maximal reasoning load within a sentence. In the
first (early/low load) condition, the reasoning load occurred early in the
sentence; in the second (late/high load) condition, the maximal reason-
ing load occurred late in the sentence (see Table 1). The time of occur-
rence of the maximal activation of prefrontal cortex varied as a function
of the location of the maximal reasoning load in the expected direction
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TABLE 1. Early versus Late Imposition of Computational Load

Early/Low Load Late/High Load

The first month after April is the The day before my favorite day is the
month before my favorite month. first day after Monday.

What is my favorite month? What is my favorite day?
June, July, Other Thursday, Friday, Other

(see Fig. 2). This difference in the time course of activation supports the
idea that cortical regions are recruited as needed. The ability to dynami-
cally recruit additional resources may very well be a source of individual
differences.

Dynamic self-assembly may be the physiological manifestation of the
adaptive nature of thought. When a task becomes too difficult for the cur-
rent strategy, a new one is “devised.” The ability to switch strategies and
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FIGURE 2. The blue curve depicts the time course observed in the left dorsolat-
eral prefrontal cortex during the early/low load condition and the pink curve the
late /high load condition. Box 2 encompasses images related to the first phrase of
the problem (e.g., the first month after April), box 3 encompasses images related
to the second phrase (e.g., is the month before my favorite month), and box 4 en-
compasses images related to the response interval. As shown, the early/low load
condition engenders more activation during the early phase of the problem com-
pared to the late/high load condition, while the late/high load condition induces
more activation later in the problem. The delay in peak activation for the late/high
load condition corresponds to the increased recruitment of dorsolateral prefrontal
cortex (DLPFC) processing later in this problem type. (Adapted from Newman
etal., 2002.)



96 Sharlene D. Newman and Marcel Adam Just

dynamically change the cortical landscape related to a given task may con-
tribute to individual differences. In fact, Garlick (2002) showed that an
artificial neural network which was better able to adapt its connections to
the environment learned to read faster, accommodated information from
the environment better, and scored higher on fluid intelligence tests. Each
of these properties are characteristic of people with higher g.

FUNCTIONAL CONNECTIVITY

A number of cortical regions are involved in performing any cognitive
task. These regions must be coordinated, possibly by passing informa-
tion back and forth. Evidence of such intercommunication pathways be-
tween cortical areas in humans performing a cognitive task comes from two
sources. The first is the existence of anatomical pathways between areas
(discussed in the next section). The corpus callosum is a prime example of
an anatomical pathway between potentially collaborating cortical areas. In
addition, many other cortico—cortico pathways are known from primate
neuroanatomical studies (see Mesulam, 2000) as well as from more recent
diffusion tensor imaging studies of white matter tracts in humans that are
related to cognitive function (Klingberg et al., 2000). Furthermore, many
additional anatomical links exist between cortical areas via subcortical re-
gions, such as the thalamus.

The second source of evidence for coordination among the activated
areas during cognitive activity is found in functional neuroimaging. The
activation in a set of cortical areas is highly synchronized, indicating col-
laboration among areas. An increasingly used technique measures the cor-
relation of the activation levels in two activated areas over some time
period, and generally shows systematic synchronization between areas,
modulated by a number of variables. The synchronization is taken as
evidence of functional connectivity (or effective connectivity; Friston, 1994;
Horwitz, Rumsey, & Donohue, 1998). Functional connectivity in the con-
text of brain imaging refers to indirect evidence of communication or col-
laboration between various brain areas. The general assumption is that
the functioning of voxels whose activation levels rise and fall together is
coordinated.

A consistent finding is that more demanding conditions tend to produce
higher functional connectivity than qualitatively similar but less demand-
ing conditions (Diwadkar, Carpenter, & Just, 2000; Hampson et al., 2002).
For example, in the domain of language there is a demonstrable functional
connectivity between Broca’s and Wernicke’s areas both when participants
are listening to texts and when they are at rest; the connectivity is sub-
stantially higher when they are listening to texts (Hampson et al., 2002).
Another example of this increased functional connectivity with increased
demand was observed when an object recognition task was made more
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FIGURE 3. Increase in functional connectivity with workload in an object recognition
task, where workload was increased by deleting more of the object contour. (From
Diwadkar et al., 2003.)

demanding by deleting more of the object contour (Diwadkar, Carpenter, &
Just, 2003). In this case, the degree of synchronization between the inferior
temporal (ventral) area and the parietal (dorsal) area increased with diffi-
culty, as shown in Figure 3.

Recent studies have shown a direct relationship between ability and
functional connectivity measures (Osaka et al., 2003; Kondo et al., 2004).
Kondoetal. (2004), for example, found that individuals with a high reading
span revealed greater functional connectivity between anterior cingulate
and Broca’s area than did low span individuals. There is also evidence
that functional connectivity increases with learning (Buchel et al., 1999). In
that study fMRI was used to examine the neural basis of associative learn-
ing of visual objects and their locations. The study found an increase in
the functional connectivity between cortical regions associated with spa-
tial and object processing with learning in the task. In addition, the time
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course of the changes in functional connectivity was closely correlated with
the time course of the changes in behavioral performance. The functional
connectivity became higher at those times when performance improved.

All three of these adaptations (the increase in functional connectivity
with task difficulty, with ability, and with learning) support the idea that
a system-wide attribute of brain function may be a key characteristic of
intelligence. In particular, the increase in functional connectivity with abil-
ity is one of the first such indicators of a system-wide characteristic of
intelligence. Like any correlation, this correlation between functional con-
nectivity and an ability measure does not indicate the underlying causality.
Nevertheless, this technique allows for the exploration of the level of coor-
dination between cortical regions across individuals, which may provide
further insights into the biological underpinnings of individual differences
in task performance.

ANATOMICAL CONNECTIVITY

Recently, a novel MRI technique (diffusion tensor imaging or DTI) has
been developed that can potentially provide information regarding the
microstructure of white matter in vivo (Basser, Mattiello, & LeBihan, 1994).
DTI has been used to examine anatomical connectivity, or the physical
neuronal connections between regions. The anatomical connections be-
tween cortical regions are essential to inter-region communication. In fact,
research suggests that the quality of these connections directly affects pro-
cessing speed. For example, recent developmental research has shown that
the neural changes that take place during the first two years of life include
a dramatic increase in the number of synaptic connections and an increase
in the thickness of the myelin sheath that envelops nerve cell axons (Siegler,
1998; Anderson, 2000). These two changes are important because they both
affect conduction speed, which is thought to, in turn, affect processing
speed. Combined with fMRI, information about white matter tracts has the
potential to reveal important information about neurocognitive networks,
which may help to elucidate the neural basis of individual differences.
Given that DTI is such a new technique, very few studies have used it.
One of the first studies, that of Klingberg and colleagues (2000), compared
the white matter tracts within the temporo-parietal region of poor and nor-
mal readers. There, Klingberg et al. found significant group differences in
the myelination of the white matter in both the left and right hemispheres.
In addition, they found a high positive correlation between the DTI mea-
sure of the left hemisphere and reading ability, as measured by the Word
Identification test (Woodcock, 1987). Their results show not only the impor-
tance of the temporo-parietal region in language processing, but also that
differences in the white matter tracts contribute significantly to individual
differences observed in reading. It will be interesting to learn from future
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DTI studies whether the properties of white matter tracts are related to
individual differences in cognitive abilities or to conventional measures
of intelligence. As this technique is further developed, it promises to shed
further light onto the neurological basis of intelligence.

IS INTELLIGENCE LOCALIZED IN THE BRAIN?

Both g and the frontal lobe have often been linked to executive functions
such as control processing, strategy formulation, planning, and monitoring
the contents of working memory (Luria, 1966; Norman & Shallice, 1980;
Snow, 1981; Duncan et al., 1996). Support for this idea comes from both
behavioral studies of normal and patient populations (Duncan, Emslie, &
Williams, 1996) and a recent neuroimaging study (Duncan et al., 2000). For
example, in the neuroimaging study, Duncan and colleagues attempted to
determine the cortical area that underpins g. In that study, two variables
were manipulated, the ¢ loading (low or high) and test type (verbal or
spatial) (an example problem is shown in Fig. 4). Duncan et al. found
that in both the verbal and spatial conditions, the frontal cortex revealed
greater activation for the high-¢ condition compared to the low-¢ condition,
supporting the idea that g reflects functions of the frontal lobe. Further
support for the importance of the frontal lobe in intelligence was found in
a recent review of the neuroimaging literature. Frontal activation similar
to that observed during the high-¢ condition was also elicited by such
processing demands as novelty, response competition, working memory
load, and perceptual difficulty (Duncan & Owen, 2000).

g | (JD | [><2| |DD| | PO
oo | @

FIGURE 4. Materials from the high-¢ and low-g spatial task. Display elements were
four panels, each containing one or more shapes, symbols, or drawings. One panel
differed in some respect from the others. Compared to the low-g problems, the high-
g problems required extensive problem solving to identify the “different” panel.
(From Duncan et al., 2000.)
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We do not dispute that the frontal lobes play an important role in prob-
lem solving and intelligence, but suggest instead that the biological basis of
intelligence extends beyond the frontal lobe. In fact, intact frontal functions
are somewhat unrelated to intelligence, as measured by psychometric tests
(Teuber, 1972). IQ scores are rarely affected by damage to that region. We
argue here that intelligence does not lie in any particular brain region, but
is instead a function of a more distributed, dynamically configured set of
areas. According to this theory, the commonality or generality of process-
ing that g represents refers to the ability of the neural system to adapt and
be flexible. More specifically, ¢ may represent the neural system’s ability to
adapt to dynamic changes in the quantity and quality of changing compu-
tation demands. A study conducted by Duncan et al. (1996) found that the
frontal processes most central to ¢ were goal neglect and goal activation.
This finding is in agreement with our dynamic processing account because
in order to adapt to changes in strategy, there must be efficient goal switch-
ing. Therefore, the theory presented in this chapter suggests that intelli-
gence cannot be localized to any particular brain region. It arises, instead,
from the coordination and collaboration of several neural components.

SUMMARY

Although many research approaches have attempted to localize differences
inintelligence to an elementary cognitive process (Kane, 2003; Jensen, 1993;
Kyllonen & Christal, 1990), we suggest a different approach in this chapter
by examining the properties of the neural system that underlies intelli-
gence. According to the principles described here, fluid intelligence may
be the product of an adaptive, flexible neural system. More specifically,
fluid intelligence may represent the neural system’s ability to adapt to
dynamic changes in a complex cognitive process.

The principles outlined here are not considered to be exhaustive, but are
meant to be a springboard from which new studies and theories of indi-
vidual differences can emerge. We now have the technological capability
to explore the human brain in its active state with the use of fMRI and soon
will be able to investigate the integrity of its white matter tracts in vivo with
DTI. With the combination of new imaging techniques and computational
modeling, it becomes possible to address new central questions regarding
the neural basis of intelligence.
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The Role of Working Memory in
Higher-Level Cognition

Domain-Specific versus Domain-General Perspectives

David Z. Hambrick, Michael J. Kane,
and Randall W. Engle

INTRODUCTION

The idea that short-term memory is an important component of intelligence
is not new. For example, over a century ago James (1890) wrote, “All the
intellectual value for us of a state of mind depends on our after memory of it.
Only then is it combined in a system and knowingly made to contribute to
aresult. Only then does it count for us.” Around the same time, Binet (1905)
included a test of short-term memory in a test battery designed to identify
learning disabled children in the Paris school system. And more recently,
short-term memory has been conceptualized as a fundamental component
of human cognition. For example, Miller (1956) famously proposed that the
capacity of short-term memory is limited to 7 & 2 bits of information. Later,
Atkinson and Shiffrin (1968) incorporated this idea of a central bottleneck
in information processing into their “modal” model of memory.

Nevertheless, the extent to which short-term memory plays an impor-
tant role in higher-level cognition — intelligence manifested in complex
cognitive activities like reasoning and learning — has been a topic of con-
siderable debate in cognitive psychology. Consider, for example, the results
of a series of experiments by Baddeley and Hitch (1974). The surprising
finding in these experiments was that a secondary task designed to tax
short-term memory had little or no effect on a variety of reasoning, com-
prehension, and memory primary tasks. In one such experiment, subjects
performed a task in which the goal was to verify sentences purporting
to describe the relationship between two letters (e.g., A precedes B — BA)
while maintaining a memory load. The secondary task had little effect
on subjects’ success in the task — a finding logically inconsistent with the
assumption of short-term memory as a central bottleneck in information
processing.

Baddeley and Hitch (1974) therefore proposed that short-term memory —
the passive storage of information — is but one part of a memory system

104
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in which a limited capacity “workspace” can be divided between process-
ing and storage functions. This concept provided a tidy explanation for
their findings. Subjects were able to divide this limited capacity workspace
between the primary task and the secondary task, as long as the latter
did not overtax the system. Following this initial work, Baddeley and his
colleagues proposed a working memory model consisting of three major
components: two “slave” systems — the phonological loop and visuospatial
sketchpad — devoted to temporary storage and maintenance of informa-
tion and a central executive responsible for planning and control processes
involved in higher-level cognition (e.g., Baddeley, 1986). Understanding
the nature of this latter component of the system and its involvement in
higher-level cognition has since been a major focus of research in cognitive

psychology.

AN INDIVIDUAL-DIFFERENCES PERSPECTIVE
ON WORKING MEMORY

In the early 1980s, research on individual differences in working memory
(WM) took off with the development of a procedure for measuring the
construct — the Daneman and Carpenter (1980) reading span task. Consis-
tent with Baddeley and Hitch’s (1974) conception of the central executive,
Daneman and Carpenter designed this task to include both a processing
component — reading sentences — and a storage component — remember-
ing the final word of each sentence for later recall. For example, given the
sentences When at last his eyes opened, there was no gleam of triumph, no shade
of anger and The taxi turned up Michigan Avenue where they had a clear view of
the lake, the task would be to report anger and lake. Daneman and Carpenter
discovered that reading span — the number of sentences a subject could read
while maintaining perfect recall of the sentence-final words — correlated
with global measures of language comprehension (e.g., verbal SAT score)
as well as with specific measures (e.g., resolving pronominal ambiguity).
Moreover, reading span was a better predictor of comprehension than was
a measure of short-term memory (word span).

A variety of WM tasks modeled after reading span have been intro-
duced since Daneman and Carpenter’s (1980) study. Like reading span,
each of these tasks is a dual task in the sense that it involves alternating
between interleaved processing and storage subtasks. To illustrate, in oper-
ation span (Turner & Engle, 1989), the goal is to solve a series of simple math
problems while remembering a word following each problem, whereas in
counting span, the goal is to count the number of target objects in a series
of displays (e.g., light blue circles among dark blue circles and light blue
triangles) while remembering the count from each display. Nonverbal WM
tasks have been developed as well. For example, Shah and Miyake (1996)
introduced a task called spatial span in which subjects decide whether each
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of a series of rotated letters is normal or mirror-imaged while remembering
the orientation of each letter.

Two observations can be made from the hundreds of independent stud-
ies in which WM tasks have been administered. The first observation is that
WM tasks are reliable; that is, these tasks measure accurately whatever it is
that they measure. For example, with approximately two months between
test intervals, Klein and Fiss (1999) reported a test-retest reliability coef-
ficient of .88 for the operation span task. Moreover, internal consistency
estimates (e.g., coefficient alphas) for WM tasks are typically in the range
from .70 to .go. This evidence can be understood in terms of classical test
theory (e.g., Novick, 1966; Spearmen, 1927). The basic assumption of classi-
cal test theory is that a single test score consists of a true score—which reflects
stable characteristics of the attribute one is trying to measure — and error.
Within this framework, reliability is interpreted as an index of the propor-
tion of variance in test scores (total variance) that is caused by variability in
true scores (true-score variance). Because reliability coefficients of WM tasks
are seldom lower than .70, and are often much higher, it therefore appears
that scores on these tasks are more attributable to stable characteristics of
subjects — to true scores — than to error.

The second observation is that individual differences in WM span cor-
relate with measures of many aspects of higher-level cognition, includ-
ing reading comprehension (e.g., Daneman & Carpenter, 1980), abstract
reasoning (e.g., Kyllonen & Christal, 1990), problem solving (e.g., Welsh,
Satterlee-Cartmell, & Stine, 1999), and complex learning (e.g., Kyllonen &
Stephens, 1990). Nevertheless, on the basis of the available evidence, it
remains unclear what various measures of WM reflect and why they corre-
late with higher-level cognition. In other words, although it is evident that
WM tasks accurately measure some capability that seems to be important
for higher-level cognition, what is the nature of this capability? At least
two major hypotheses concerning this question have been advanced.

The premise of the first hypothesis is that WM tasks capture factors that
are applicable to only a particular task or class of tasks. For example, ac-
cording to this domain-specific hypothesis, reading span correlates with
reading comprehension simply because reading span itself involves read-
ing comprehension. In line with this hypothesis, Daneman and Carpenter
(1980) proposed that by virtue of their greater efficiency in the process-
ing component of the reading span task — reading sentences — the high-
span individuals in their study had more residual capacity to devote to
memorization of the sentence-final words than did the low-spans. Sim-
ilarly, MacDonald and Christiansen (2002) claimed that “the distinction
commonly drawn between language-processing tasks and linguistic WM
tasks is an artificial one, and. .. all of these tasks are simply different mea-
sures of language processing skill” (p. 36) (see also Ericsson & Kintsch,

1995).
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In contrast, the second hypothesis proposes that, in addition to any
domain-specific factors, WM tasks capture factors that are involved in a
wide range of cognitive tasks. In particular, this domain-general hypoth-
esis assumes that there is nothing special about a particular WM task like
reading span or operation span. Rather, all WM tasks, regardless of their
specific requirements, tap domain-general factors that play a role in many
different cognitive tasks. For example, consistent with this hypothesis, we
have argued that one domain-general factor captured by WM tasks is the
capability for attention control, which we believe underlies the ability to
maintain goals and other task-relevant information in a highly activated
and accessible state, particularly under conditions of interference or dis-
traction (Engle, Kane, & Tuholski, 1999a; Engle, Tuholski et al., 1999b). As
another example, Hasher and Zacks (1988) proposed that individual differ-
ences in WM span arise from the efficiency and effectiveness of a number
of inhibitory processes that regulate the contents of conscious thought. Al-
though the theoretical mechanisms of these theories differ — ours empha-
sizes maintenance of task-relevant information whereas theirs emphasizes
inhibition of task-irrelevant information — the theories are similar in that
both assume that domain-general factors underlie individual differences
in WM and its involvement in higher-level cognition.

Which Hypothesis Is Correct?

Domain-specific factors almost certainly account for some of the true-score
variance in WM tasks because, as Spearman (1927) observed, we must as-
sume that performance on any test of mental ability is influenced by factors
unique to that test, in addition to any factors that operate across different
tests. Stated differently, no task is “process-pure” in the sense that it cap-
tures only the task-independent construct of interest. For example, skill
in math may contribute to the total variance in operation span, whereas
skill in reading may contribute to the total variance in reading span. In
fact, dozens of factors may contribute to the total variance in WM span as
measured by a particular task. At the same time, evidence suggests that
a sizeable proportion of the true-score variance in WM tasks is accounted
for by domain-general factors, above and beyond the contribution of any
domain-specific factors. For example, in a study by Engle et al. (1999b),
subjects completed a battery of WM tasks that included reading span, op-
eration span, and counting span. Even though the requirements of these
tasks were quite different, the average inter-task correlation was .43, indi-
cating that an average of 18% of the variance in one task was accounted for
by factors operating in the other tasks (i.e., .43> = .184). Of course, another
way to interpret this observation is that 82% of the variance in these tasks
was accounted for by factors not operating in the other tasks. However, the
central claim of the domain-general hypothesis is not that the total variance
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in WM span is accounted for entirely by domain-general factors — or even
mostly — but rather that these factors explain the correlation of WM span
with higher-level cognition, with little or no contribution from domain-
specific factors. In other words, if the true-score variance in WM span can
be decomposed into two types — domain-specific and domain-general —
then the prediction is that the latter drives correlations of WM span with
higher-level cognition. Evidence from studies that have followed two quite
different research approaches supports this conclusion.

Microanalytic Research

The first approach is microanalytic because the goal is to investigate how
WM span relates to performance in what might be considered “elemen-
tary” attention tasks; that is, tasks designed to capture basic information
processes underlying higher-level cognition. This research has revealed
that individual differences in these elementary tasks are strongly related
to individual differences in a variety of WM tasks, suggesting that the ca-
pability for attention control may lie at the heart of individual differences
in WM span.

Consider the results of a study by Kane et al. (2001). Subjects classified as
either low or high in WM span (low-span or high-span) performed a version
of the so-called antisaccade task. The procedure was simple: In the prosac-
cade condition, a flashing cue appeared in the same location on the screen
as an upcoming stimulus — the letter B, P, or R — and the task was to press a
key corresponding to the stimulus. By contrast, in the antisaccade condition,
the target always appeared in the location opposite to that of the cue. The
results were straightforward: the advantage of high-spans over low-spans
in both reaction time and accuracy was larger in the antisaccade condition
than in the prosaccade condition. Moreover, in a follow-up experiment,
Kane et al. monitored eye movements and found that this was because low-
spans made more reflexive eye movements toward the flashing cue in the
antisaccade condition than did high-spans. Similarly, in a study by Schrock
and Engle (in preparation), in which the subject simply had to look at a
box on the opposite side of the screen from a flashing cue, low-spans were
much more likely than high-spans to make their first saccade an erroneous
movement to the flashing cue. In fact, even when low-spans were correct
in their first saccade, they were slower than high-spans to begin the eye
movement.

We believe that the results of these studies provide especially strong
support for a domain-general hypothesis of WM because there are no ap-
parent domain-specific factors to which span-related differences in the an-
tisaccade task can be attributed. Results of other studies from our labs are
consistent with this hypothesis as well. For example, Kane and Engle (2000)
used a three-trial serial recall task in which subjects were presented with
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three 10-word lists, each of which was followed by a 30-second rehearsal
preventative task before recall. As predicted, there was greater buildup of
proactive interference in low-spans than in high-spans. One interpretation
of this finding is that, after the first trial, high-spans were better able to
maintain the words in an activated state than were low-spans and were
hence less likely to confuse these words with those from the previous trial
or trials. To test this hypothesis, in a second experiment, subjects performed
the task as before or while performing a continuous, attention-demanding
secondary task. If attention control was responsible for the span-related
difference in proactive interference observed in the first experiment, then
the secondary task should have produced more of an increase in proactive
interference for high-spans than for low-spans. This is what happened;
indeed, in the divided-attention condition, the performance of low-spans
and high-spans was indistinguishable.

In another microanalytic study, Kane and Engle (2003) used the Stroop
task to investigate the possibility that WM span is related to a phenomenon
Duncan (1990) termed “goal neglect.” The basic idea of goal neglect is that
attention failures occur when goal-relevant information is lost from the
active portion of memory because the environment lacks external cues for
appropriate action. In a series of experiments, Kane and Engle set up this
type of situation by manipulating percentages of congruent and incongru-
ent trials in the Stroop task. In the 0% congruent conditions, almost all of
the trials were incongruent (e.g., BLUE displayed in red), and so the task
context reinforced the goal, to ignore the word, on virtually every trial.
By contrast, in the 75% congruent conditions, subjects could neglect the
task goal on a majority of trials with no negative consequences. However,
accurate responding on the rare incongruent trials here required that sub-
jects maintain access to the ignore-the-word goal. Taken together, the results
revealed that low-spans were much more error-prone than high-spans in
the 75% conditions but not in the 0% conditions. Thus, low-spans were at a
disadvantage when the task placed a premium on actively maintaining the
goal of ignoring words in a task environment that lacked external prompts
to action.

As afinal example, Conway, Cowan, and Bunting (2001) found that WM
span is related to a phenomenon first reported by Moray (1959). In a series
of experiments by Cherry (1953), subjects were instructed to repeat a mes-
sage presented in one ear and to ignore a message presented in the other ear.
Subjects had little difficulty performing this task, and thus theorists such
as Broadbent (1958) proposed that attention acts as an all-or-none filter, let-
ting relevant information into short-term memory but blocking out irrele-
vant information. Nevertheless, Moray demonstrated that content from an
unattended message is not rejected completely. In particular, a substantial
number of subjects (33%) heard their name when it was presented in the
unattended message. By contrast, very few participants could recall a word
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that was repeated 35 times in the unattended ear. Why, though, did 100% of
Moray’s subjects not hear their own names? Conway et al. reasoned that if
what WM tasks capture is related to the ability to control attention — to di-
rectit toward relevant information and away from irrelevant information —
then high-spans would be less likely to notice their names in an unattended
message than low-spans. Thus, Conway et al. replicated Moray’s experi-
ment, but with low-span and high-span subjects. The results were striking:
65% of low-spans heard their names in the unattended message, whereas
only 20% of high-spans did so.

The Role of Strategies?

We believe that the evidence considered thus far supports the hypothesis
that individual differences in various span tasks reflect differences in the
capability for attention control, and elsewhere we have argued that this
individual-difference characteristic is a relatively stable aspect of cogni-
tion (e.g., Engle et al., 1999a). Nevertheless, an alternative hypothesis —
and one that is particularly appealing because it implies that deficits in
WM can be ameliorated through instruction — posits that these differences
stem not from differences in any fixed information processing capacity, but
rather from differences in the strategies that low-spans and high-spans use
to perform the tasks.

Using the reading span task, McNamara and Scott (2001) investigated
this possibility by training subjects in the use of a mnemonic technique
called “chaining” that involves memorizing words by generating sentences
to connect them. McNamara and Scott found that training improved read-
ing span performance by 41% and 53% in two experiments. Moreover, these
improvements did not come at the expense of poorer performance in the
comprehension component of the reading span task, as comprehension ac-
tually improved from pretest to post-test in both experiments. McNamara
and Scott concluded that strategy training enhanced subjects’ efficiency in
performing the reading span task, thereby freeing up resources for use in
the comprehension component of the task.

The McNamara and Scott (2001) study convincingly suggests that strate-
gies can influence performance in WM tasks; in addition, this study is im-
portant because it highlights the importance of taking into account the
possibility of strategy use when assessing WM. Nevertheless, McNamara
and Scott’s finding is not surprising because many studies have demon-
strated beneficial effects of strategy instruction on cognitive performance.
For example, a number of researchers have reported that strategy training
enhances performance on a task that is regarded as a relatively pure indi-
cator of general intelligence — Raven’s Progressive Matrices (e.g., Blieszner,
Willis, & Baltes, 1981; Klauer, Willmes, & Phye, 2002; Denney & Heidrich,
1990). There simply is no reason to expect that strategy training would not
also enhance WM span. Furthermore, McNamara and Scott did not address
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the important question of whether differential strategy use by low-spans
and high-spans accounts for the correlation of WM span with higher-level
cognition.

To answer this question, Turley-Ames and Whitfield (2003) conducted
animpressive, large-scale study (N = 360) to investigate effects of different
types of strategies on the correlation between operation span and reading
comprehension. After taking a pretest of operation span, subjects were
assigned to a control condition or to a condition in which they were in-
structed in use of a strategy for the operation span task involving rote
rehearsal, visual imagery, or forming semantic associations. Subjects then
completed another version of operation span. Consistent with McNamara
and Scott’s (2001) finding, strategy training enhanced WM performance.
However, strategy training did not reduce — much less eliminate —
the correlation between operation span and reading comprehension. In
fact, at post-test, operation span correlated more positively with reading
comprehension in each strategy condition — rehearsal (r = .56), imagery
(r = .32), and semantic (r = .47) — than in the control condition (r = .30).

Therefore, the results of the Turley-Ames and Whitfield (2003) study
suggest that differential strategy use by low-spans and high-spans may
suppress rather than account for the relationship between WM span and
higher-level cognition. Results of an earlier study by Engle, Cantor, and
Carullo (1992) provide additional support for this conclusion. In this study,
using a “moving-window” technique in which elements of either opera-
tion span or reading span were presented sequentially rather than simul-
taneously, Engle et al. measured the amount of time subjects spent on the
processing component of the task. They then interpreted this measure as
an estimate of the extent to which subjects strategically traded off time on
the processing component for time on the storage component. In agree-
ment with Turley-Ames and Whitfield’s (2003) finding, for both operation
span and reading span, there was no evidence for a decrease in the corre-
lation between WM span and reading comprehension after controlling for
this estimate; that is, the correlation increased slightly for operation span
(.34 — .40) and was unchanged for reading span (.40 — .40).

To sum up, based on the available evidence, it appears that the main ef-
fect of strategy use may be on the total variance in WM performance. That
is, as both McNamara and Scott (2001) and Turley-Ames and Whitfield
(2003) demonstrated, it seems clear that strategy use can influence scores
in WM tasks. At the same time, the available evidence does not support
the hypothesis that differential strategy use by low-spans and high-spans
accounts for the relationship between WM span and higher-level cog-
nition. To the contrary, if anything, differential strategy use appears to
suppress the true magnitude of this relationship. Additional research like
that by Turley-Ames and Whitfield will be critical to understanding why
this is so.
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Macroanalytic Research

An advantage of microanalytic research on WM is that it is potentially in-
formative about the precise nature of basic information processing mech-
anisms underlying individual differences in WM. That is, if WM span cor-
relates with individual differences in some experimental task, then the
implication is that a common mechanism is operating in both tasks. To
reiterate, based on results of the microanalytic studies just reviewed, we
argue that WM reflects the capacity for attention control, which is critical
for tasks that demand maintenance of task-relevant information. However,
a potential disadvantage of this approach is a consequence of a basic psy-
chometric principle alluded to earlier: no single task can be expected to
provide a process-pure measure of the construct it is hypothesized to mea-
sure. For this reason, although a factor like attention control may indeed
play an important role in the experimental tasks we have investigated in
our research, we must assume that a number of other factors contribute to
true scores in the tasks. Furthermore, on the basis of evidence from micro-
analytic studies alone, the possibility that these factors contribute to the
correlation of scores in the task with WM span cannot be unequivocally
rejected.

With this in mind, a second approach that we have used in research
on the nature of individual differences in WM is macroanalytic in that the
goal is to investigate the relationship between WM and individual differ-
ences in broad, psychometrically established constructs. In particular, this
research has focused on the link between WM and the aspect of cognition
that Cattell (1943) first termed fluid intelligence (gs) — the ability to solve
novel problems and adapt to new situations. Summarized, evidence from
macroanalytic research suggests that WM may be an important component
of g . For example, at the latent-variable level, Kyllonen and Christal (1990)
found a strong positive correlation (.90) between WM and ¢ ;. Furthermore,
Kyllonen (1996) also reported high positive correlations between g r and la-
tent variables representing WM in three content areas: verbal (.94), spatial
(.96), and numerical (.95). Kyllonen summarized his research as follows:

We have observed in study after study, under a variety of operationalizations, using
a diverse set of criteria, that working memory capacity is more highly related
to performance on other cognitive tests, and is more highly related to learning,
both short-term and long-term, than is any other cognitive factor. This finding of
the centrality of the working memory capacity factor leads to the conclusion that
working memory capacity may indeed be essentially Spearman’s g. (p. 73)

Engle et al. (1999b) further investigated the relationship between WM
and g¢. WM was measured with span tasks similar to those described ear-
lier, while short-term memory (STM) was measured with simple memory
span tasks (e.g., word span); ¢ was measured with two nonverbal tests
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of abstract reasoning ability. Engle et al. predicted that latent variables
representing WM and STM would correlate, given that some of the same
domain-specific skills and procedures were captured by both. For example,
skill in encoding information into long-term memory could contribute to
performance in both the reading span and word span tasks. However, they
also predicted that once this correlation was taken into account, the WM
residual variance would reflect individual differences in attention control
and would correlate positively with g ¢, whereas the STM residual would
not. The data were consistent with this prediction: the WM residual corre-
lated significantly with ¢ (.49) whereas the STM residual did not (.12).

Verbal versus Spatial WM?

Recently, we have focused more directly on the question of whether WM
is domain-specific or domain-general. Given that verbal WM tasks predict
both g and low-level attention control, it is quite likely that WM tasks
measure a general cognitive capability. However, other work suggests that
verbal and spatial WM tasks may measure different constructs. For exam-
ple, Shah and Miyake (1996) observed the correlations between scores in
verbal and spatial WM tasks (reading span and spatial span) and inde-
pendent estimates of verbal ability and spatial ability. The major finding
of this study was that spatial span correlated with spatial ability (.66), but
not with verbal ability (.07), whereas the reading span measure correlated
with verbal ability (.45), but not with spatial ability (.12). In addition, the
correlation between the two WM tasks was weak (.23). Shah and Miyake
(1999) therefore concluded that “the predictive powers of the two complex
memory span tasks seem to be domain specific” (p. 11).

Nevertheless, a limitation of the Shah and Miyake (1996) study is that
the subjects were college students from two relatively selective universi-
ties. Therefore, as Shah and Miyake themselves acknowledged, it is possi-
ble that variability in the span scores due to a domain-general WM factor
was restricted compared to what might be expected within a more het-
erogeneous sample. With this in mind, we recently conducted a study in
which over 200 subjects, recruited from university subject pools and from
the general population, completed both verbal and spatial WM and STM
tasks; in addition, subjects completed tests of verbal reasoning and spatial
reasoning, as well as “decontextualized” reasoning (e.g., Raven’s Progres-
sive Matrices). As described before, each WM task included a processing
component and a storage component, while each STM task included only
a storage component.

As expected, there were moderate positive correlations among all of the
memory tasks. However, the patterns of intercorrelations differed for STM
and WM. The mean correlation among domain-matching WM measures
was .64, compared to a mean of .56 among domain-mismatching measures.
By contrast, the mean correlation among domain-matching STM measures
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FIGURE 1. Domain-general model (top panel); domain-specific model (bottom
panel).

was .68, compared to a mean of .47 among domain-mismatching measures.
Thus, the domain-matching versus domain-mismatching difference was
greater for the STM measures (.21) than for the WM measures (.08). In line
with other research (e.g., Park et al., 2002; Swanson & Howell, 2001), these
results suggest that the verbal and spatial STM span tasks measured more
distinct constructs than did the verbal and spatial WM span tasks.

To further investigate the possibility that WM is domain-general, we
conducted both exploratory and confirmatory factor analyses on the WM
measures. In an exploratory factor analysis, the first factor accounted for a
large proportion of the variance (65.9%), and it was the only factor that met
the criterion for extraction (i.e., eigenvalue greater than one), suggesting
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that the WM measures tapped a single construct. To perform a more rig-
orous test, we also conducted confirmatory factor analyses to compare
1-factor and 2-factor models, with the latter model consisting of separate
but correlated verbal and spatial factors (WM-V and WM-S). The results,
illustrated in Figure 1, were as follows: In the 1-factor model, each of the
WM measures had a strong positive loading on the common factor. In ad-
dition, while the 2-factor model provided a slightly better fit to the data
than did the 1-factor model, the improvement was not statistically signifi-
cant, and the verbal and spatial factors correlated near one (.93). The data
clearly do not lead us to reject the parsimonious view that WM capacity
reflects a domain-general construct.

We conducted two additional analyses to examine the involvement of a
domain-general WM in g . In the first analysis, the “predictor-side” model
was a 1-factor WM model, whereas the “criterion-side” model was a 3-
factor reasoning model with a g factor, onto which all of the reasoning
measures loaded, plus domain-specific verbal and spatial factors, onto
which the verbal and spatial measures loaded (REA-V and REA-S). This
“nested” model of the reasoning tasks allowed us to isolate the variance
shared among all the reasoning tasks (gr), as well as the residual variance
that was uniquely shared among the verbal tasks and among the spatial
tasks. As shown in Figure 2, WM predicted about 35% of the variance in
gf, a value consistent with estimates from prior studies (Conway et al.,
2002; Engle et al., 1999b). In addition, WM had weaker, but still significant,
effects on domain-specific aspects of both verbal and spatial reasoning (.27
and .30, respectively). Thus, the variance shared by verbal and spatial WM
tasks, reflecting domain-general WM, predicted both general and specific
reasoning abilities.

In the second analysis, we added the STM measures to the structural
equation model shown in Figure 2. In this model, all of the memory mea-
sures loaded onto a factor that we hypothesized to represent the central
factor underlying individual differences in WM: executive attention (EA).
In addition, the six verbal memory measures simultaneously loaded onto
a verbal factor, whereas the six spatial memory measures loaded onto a
spatial factor. We interpreted these domain-specific factors (STORAGE-V
and STORAGE-S) as reflecting storage or coding processes specific to ver-
bal or spatial stimuli and independent of domain-general executive at-
tention. The logic guiding specification of this model was that no WM or
STM task is purely domain-general or domain-specific. Instead, WM mea-
sures capture a domain-general factor primarily but also domain-specific
factors, whereas STM tasks capture domain-specific factors primarily but
also a domain-general factor. Therefore, from each measure, we extracted
domain-general variance and domain-specific variance.

Consistent with the model in Figure 2, EA had a strong effect on g (.57)
and weaker effects on REA-V (.26) and REA-S (.33). These correlations



8¢ /09

4Rt

€' /L9

e /89

LY /TS

6L

~

L

oL

€/ LY

81 /e

99"/ Ly

9" /09

4y

Vadd/3D

N

S
“b
i

-18 pue Inm Suneer Surppow uogenbs [eINONNg T TANOI

0¢’

uedgwwAg QL
¥9’

uedgpeoy €L
LT

uedgodo L

116



The Role of Working Memory in Higher-Level Cognition 117

almost perfectly matched the ones we found when we modeled “exec-
utive attention” with only the WM span tasks (cf. Fig. 2). In addition,
STORAGE-V had a positive effect on REA-V (.42) but a nonsignificant ef-
fecton gr. As prior studies have found (e.g., Engle et al., 1999b), verbal stor-
age and rehearsal processes account for unique variance in verbal ability
over and beyond that accounted for by WM. However, the same is not true
for g ¢, where only WM accounts for unique variance. Lastly, STORAGE-S
showed a quite different pattern of relations to reasoning, with strong ef-
fects on both REA-S (.39) and g (.51). Thus, not only did spatial-storage
processes account for aspects of spatial reasoning that are independent of
g, but they also accounted for a sizeable proportion of ¢ variance that
is not shared with EA. Consistent with other research (e.g., Miyake et al.,
2001; Oberauer, 1993), this finding suggests that spatial storage may be
more closely tied to executive functioning than is verbal storage. A pos-
sible interpretation of this finding is that verbal storage is supported by
well-learned coding and storage processes (e.g., rehearsal), whereas spatial
storage, due to its novelty, must rely more on attention control ability. This
is an intriguing hypothesis as it suggests that executive attention can be
measured in span tasks without dual-task requirements, but it must await
further investigation.

Toward a Broader Perspective on the Role of WM
in Higher-Level Cognition

To sum up, evidence from two types of research is consistent with a domain-
general hypothesis of individual differences in WM. First, microanalytic
research suggests that an important factor underlying individual differ-
ences in WM is the capacity for attention control. That is, WM span cor-
relates with performance in elementary attention tasks like antisaccade.
Once again, we believe that this evidence is compelling because there are
no apparent domain-specific factors to which span-related differences can
be attributed in these tasks. Second, macroanalytic research suggests that
WM plays an important role in the broad aspect of cognition referred to
as g¢¢. Thatis, WM span predicts g ¢ even after the contribution of domain-
specific factors has been taken into account.

But how important is WM for real-world tasks in which many other fac-
tors might be expected to play a role? For example, does WM contribute to
success in tasks like choosing a move in a chess game, or even in more mun-
dane tasks like financial planning? We have begun to explore this sort of
question. The general approach in this research is to create a laboratory sim-
ulation of some real-world task and then to determine whether, and to what
extent, WM contributes to performance above and beyond the influence
of other possible predictors. For example, in a recent study by Hambrick
and Engle (2002), subjects performed a task that involved listening to, and
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then answering questions about, simulated radio broadcasts of baseball
games. The subjects were 181 adults with wide ranges of WM and knowl-
edge about baseball, and the radio broadcasts were recorded by a baseball
announcer for a local radio station.

Not surprisingly, baseball knowledge was a strong predictor of memory
for information from the baseball games, including changes in which bases
were occupied after each turn atbatand information about the players (e.g.,
batting averages). In fact, baseball knowledge accounted for over half of
the variance. However, there was evidence that WM enhanced the effect of
domain knowledge on memory performance. That is, for information that
was judged directly relevant to the games (e.g., players’ batting averages),
the effect of domain knowledge on memory performance was greater for
high-spans than for low-spans. Based on this finding, we suggested that
WM may serve as a “bottom-up” constraint on knowledge use in cognitive
performance. In particular, we suggested that to the extent that integrat-
ing new information with preexisting knowledge depends on maintaining
that information in an activated state for some period of time, high-spans
should benefit more from preexisting knowledge than low-spans.

Additional evidence concerning the interplay between domain knowl-
edge and WM was reported by Wittmann and Siif8 (1999), who investigated
the effects of domain knowledge and WM on performance in work simu-
lations. For example, in one task, the goal was to control the energy output
of a coal-fired power plant by manipulating a number of variables (e.g.,
coal input); another task involved managing the production of a garment
manufacturing company. A consistent finding from this research was that
task-specific knowledge (i.e., knowledge acquired during the simulations)
was a strong predictor of final performance. However, Wittmann and Stif8
also reported that WM was a significant predictor of performance above
and beyond knowledge. Thus, there is reason to believe that effects of
WM on higher-level cognition are not limited to simple laboratory tasks.
Rather, WM may be an important contributor to success in complex task
environments in which many other factors might also be expected to play
arole.

SUMMARY AND CONCLUSIONS

Working memory has now been a topic of intensive research in cognitive
psychology for more than 25 years. What has this research revealed about
the nature of this construct and its involvement in higher-level cognition?
At least two conclusions seem warranted. First, the work from two com-
plementary perspectives — microanalytic and macroanalytic — converges
on the conclusion that individual differences in WM span reflect some-
thing more general than factors tied to particular domains. For example,
WM span correlates with individual differences in elementary attention
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tasks and in tests of general intelligence. Second, it now seems clear that
these domain-general factors may be responsible for the correlation of WM
span with higher-level cognition. Important goals for future research are
to refine understanding of the nature of these factors and to study their
involvement in complex, real-world activities.
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Higher-Order Cognition and Intelligence

Edward Necka and Jaroslaw Orzechowski

INTRODUCTION

We define higher-order cognition as information processing phenomena in
which the metacognitive factors of monitoring and control play the funda-
mental role. This term is practically synonymous with complex cognition,
because compound problems rely on the processes of monitoring and con-
trol to much greater extent than simple problems do. In this chapter, we
review the literature on the relationships between human intelligence and
complex, higher-order information processing. First, we will discuss the
criteria of complexity of cognitive tasks. Then, we will provide a selection
of empirical data concerning intelligence and problem solving. A section
will be devoted to the studies that directly address the problem of the
role of metacognition in intelligence. The chapter ends with the discussion
of basic methodological problems involved in the study of relationships
between higher-order cognition and intelligence.

INTELLIGENCE AND COGNITIVE COMPLEXITY

Intelligence is frequently defined as the ability to solve complex prob-
lems (Sternberg & Detterman, 1986). According to Carlstedt, Gustafsson, &
Ullstadius (2000), who commented on the results of the survey conducted
by Linda Gottfredson (1997), two aspects of human intelligence appear es-
sential: quick adaptation to new situations and efficient solution of complex
cognitive tasks. Hence, to determine who is intelligent we need to work out
the criteria based on either novelty or complexity. In practice, the complex-
ity criterion is more frequently applied, at least in measurement, because
novel tasks and situations are hard to arrange in controlled conditions of

Preparation of this chapter has been supported by the grant No. 2 Ho1F 056 22 from the Polish
Scientific Research Committee (KBN) to Edward Necka.

122



Higher-Order Cognition and Intelligence 123

psychological assessment. Intelligence tests are thus typically constructed
as sets of items that require the solution of a series of complex problems,
usually inductive reasoning problems, like analogies, series completions,
and classifications (Lohman, 2000; Primi, 2002).

It is not an easy job to define the complexity of cognitive tasks
(Marshalek, Lohman, & Snow, 1983; Primi, 2002). The simplest criterion
applies to the time needed to complete a certain task. If an average person
needs less than one second to respond, a task is judged as simple, although
even in that case some differences in the level of complexity are discern-
able (Deary, 2000; Larson, 1990). Tasks that need more than one hour to
be solved are usually complex. We start to doubt the chronometric crite-
rion when we switch to tasks that require several seconds or a couple of
minutes to respond. Are they complex enough to serve as an indication of
human intelligence? Another criterion refers to the complication of the in-
formation processing model that represents the problem-solving process.
For instance, flow charts that represent analogical reasoning (Sternberg,
1977) are much more complicated than flow charts referring to sentence
verification (Clark & Chase, 1972) and other elementary cognitive tasks.
This criterion may be questionable on the basis of the obvious fact that flow
charts are just theoretical constructs created at any level of abstraction, ei-
ther low or high, depending on the hypothetical goal they are supposed to
serve. It is therefore quite possible to represent complex tasks with simple
models or vice versa.

A third possible criterion of complexity pertains to the number of fac-
tors influencing human performance or the number of variables used to
manipulate the task’s structure (Primi, 2002). The majority of elementary
cognitive tasks (ECTs) used in intelligence research, such as simple and
choice reaction time tasks, the Hick paradigm, or the sentence-picture ver-
ification task (SPVT), are not complex at all (Carlson & Widaman, 1987). On
the other hand, there exists an increasing category of tasks that simulate
certain real-life situations, such as the fire brigade’s work, factory man-
agement, or consumers’ behavior. These microworlds are becoming more
and more popular in intelligence research, because their measures of per-
formance tend to show reasonable correlations with standard intelligence
tests (Rigas, Carling, & Brehmer, 2002). The fourth criterion of complexity
pertains to the control and monitoring processes involved in the comple-
tion of a task. If certain tasks require such metacognitive factors in order to
be properly tackled, they are probably complex enough; otherwise they are
judged to be simple. However, the use of metacognitive tools may depend
on one’s capabilities, preferences, or styles of thinking rather than on the
requirements inherent in the task’s structure.

As we can seeg, the criteria of complexity are dubious and overlapping.
We therefore suggest that the term “complexity” be used as a marker of the
specific approach to the study of human intelligence rather than the precise
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FIGURE 1. Levels of complexity of cognitive tasks, estimated time needed for
their solution, and the hypothesized direction of causation in the intelligence/
performance relationship (ECT = elementary cognitive tasks, CTT = complex cog-
nitive tasks, VCCT = very complex cognitive tasks).

defining criterion for categorization of cognitive tasks. According to these
criteria, tasks that are commonly applied in psychological experiments
have one of three levels of complexity that correspond to respective time
periods. We realize that the temporal criterion is rather imperfect because
there exist tasks that require a lot of time and still are quite simple in nature,
like multiplication of two 10-digit numbers by hand. However, the dimen-
sion of time as a criterion of complexity should work in most cases. So,
at the lowest level, there are various elementary cognitive tasks (e.g., sim-
ple and choice reaction time or sentence—picture verification), which are
normally performed in not more than several seconds (Fig. 1). At the in-
termediate level, there are reasoning problems, including analogies and
syllogisms. Their solution time is articulated in minutes rather than sec-
onds. The third level involves real-life or simulated problems that need at
least several hours to complete. The data prove that people who differ in
the standard psychometric measures of intelligence deal with both simple
(Deary, 2000) and complex (Lohman, 2000) tasks in a different way. We
do not know, however, whether intelligence is a causal factor determining
the way people tackle various problems or just the result of some specific
mode of solving them.

Although it is not always possible to resolve this problem on empirical
grounds, it seems worthy of consideration on a theoretical level of analy-
sis. We speculate that, in the case of simple tasks, intelligence is probably a
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result rather than the cause (the bottom-up hypothesis). According to this
line of reasoning, intelligence is viewed as a complex mental ability consist-
ing of elementary cognitive processes, which in turn depend on the neural
efficiency (speedy or flawless transmission of signals in the CNS). An ef-
ficient brain causes effective processing of information at the elementary
level of analysis, and such efficacy renders high levels of intellectual abil-
ities. In the case of complex tasks, intelligence is regarded to be a causal
factor (the top-down hypothesis). According to this supposition, intelli-
gence is something like the general mental capacity that allows people
to cope effectively with complex tasks. If the mental capacity is general
enough, it should help to solve a broad category of tasks, especially the
complex ones. It is why the concept of g (general factor of human intelli-
gence) is attractive as a means to account for the fact that smart people do
better in a variety of tasks (Jensen, 1998). As to the intermediate level of
complexity, we hypothesize both directions of determination.

PROBLEM SOLVING AND INTELLIGENCE

Extensive psychological literature on the subject of problem solving is
mostly focused on general issues, such as the rules of reasoning (e.g.,
Newell & Simon, 1972), strategies and heuristics used to work out a tenable
solution (e.g., Thomas, 1974), the role of mental representation of the task
(e.g.,Hayes, 1989), and factors hindering the accomplishment of good solu-
tions (e.g., Duncker, 1945). There is a category of problem-solving studies,
though, which is motivated by the search for mechanisms of human intelli-
gence. These studies focus on two questions: (1) What is the structure and
composition of “intelligent” cognitive processes? and (2) Are there any
relationships between psychometrically assessed abilities and problem-
solving efficiency? These questions refer to different research paradigms
adopted in the field.

The Processual Approach

In the processual approach, researchers aim at discovering the structure of
cognitive processes that are judged as intelligent on the basis of intuition,
consensus, or comprehensive theoretical considerations. For instance, it is
widely believed that inductive reasoning tasks, mostly analogies, are diag-
nostic of one’s general cognitive competence (Primi, 2002). This conviction
comes from Spearman’s (1923) theory of intelligence as an ability to carry
on abstract rules of thinking, which he called eduction of relations and
eduction of correlates. Having defined the cognitive ability as proficiency
in drawing inductive conclusions, psychologists started to produce vari-
ous assessment tools, many of which consist of the analogical reasoning or
series completion tasks. From this point of view, it is not worth asking



126 Edward Necka and Jarostaw Orzechowski

whether intelligent people perform better than less intelligent ones in
numerous inductive reasoning tasks, because such tasks are practically
synonymous with many intelligence tests. What is worth doing, though,
is the investigation of cognitive processes underlying inductive inference.
Decomposition of the cognitive processes responsible for test taking, rea-
soning, and other intellectual tasks became the landmark of the cognitive
revolution in the study of human intelligence, symbolized by the works of
Carroll (1976), Hunt (1980), and Sternberg (1977). This kind of approach
has been also adopted by the authors who aimed at describing certain tests,
like Raven’s matrices (Carpenter, Just, & Shell, 1990) or Kohs block designs
(Rozencwajg & Corroyer, 2002), in terms of underlying cognitive processes.

Sternberg’s (1977, 1985) componential analysis is particularly interest-
ing from this point of view. Having established the number and sequence
of components of a chosen intellectual process, he was able to assess their
duration and relative importance in the machinery of intelligence. For in-
stance, he demonstrated the indispensability of mapping as a component
in analogical reasoning processes as well as in metaphorical thinking. Al-
though this approach was not primarily motivated by the attempt to ac-
count for individual differences, it allowed detection of some important
sources of such differences. It revealed, for instance, that people charac-
terized by high levels of reasoning skills used more time for the initial
component of encoding at the expense of the final component of response
execution. Such findings were not only counterintuitive at first sight but
also highly informative concerning the structure of intellectual processes
and the cognitive sources of mental abilities.

Apart from the decomposition of intellectual processes, the processual
approach stimulated a new wave of research on how intelligence is related
to thinking and knowledge. Ontologically, thinking is a fluid cognitive
process whereas intelligence is a solid structure, that is, an ability or set of
abilities. How can we investigate the relationships between such different
phenomena? The relation of thinking to intelligence became much easier
to explore thanks to the realization that intelligence is also a process or set
of processes, namely, the processes hidden behind the solution of psycho-
metric tests. Such conceptualization allowed the formulation of the theory
of intelligent thinking (Frensch & Sternberg, 1989), which was supposed to
link the domains of expertise, thinking, and intelligence. According to the
authors, “skilled problem solving can be viewed as a special case of intelli-
gent thinking, and intelligent thinking refers to the activation of intelligence
in a particular problem solving situation” (p. 180). Thus, intelligent people
may think in a stupid way if they cannot invest their abilities properly. As
much as their investments are appropriately located into some complex
domain, intelligent people act as experts. Otherwise, they act as typical
underachievers, being able to obtain high IQ scores without an ability to
use their resources properly.
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Theories of intelligence do not have to be differential in nature. Psychol-
ogists are not obliged to regard the existence of huge differences among
people concerning their cognitive skills as an empirical fact worthy of
explanation. Developmental theories, like Piaget’s (1972) or Vygotsky’s
(1978), are particularly ignorant of individual differences, focusing on age
differences instead. The field of artificial intelligence also prefers a general
rather than a differential approach (Schank, 1980). As long as such theo-
ries are able to account for the structure, composition, and peculiarities
of intellectual processes, they do not need to bother with individual dif-
ferences. However, the existence of such differences was historically the
most important factor underlying the construction of theoretical models
and assessment tools of intelligence. The next section demonstrates that
the situation has not changed very much.

The Individual-Differences Approach

In this approach, researchers concentrate on differences between people
characterized by high versus low levels of cognitive abilities regarding
their efficiency in solving complex problems. The abilities are normally
assessed by psychometric tools, although some studies have adopted more
realistic criteria.

Empirical evidence concerning the hypothesized supremacy of high 1Q
people in many popular problem-solving tasks is surprisingly scarce. This
is paradoxical because intelligence is by definition the ability to solve prob-
lems. For instance, performance on tasks like the Tower of Hanoi, or mis-
sionaries and cannibals, seems not to depend on the individual level of
intelligence, although these tasks are widely used in cognitive psychology
(Eysenck & Keane, 1995); moreover, they have been adopted by neuropsy-
chologists as tools to investigate the so-called executive functions (Robbins
et al., 1998). Performance on syllogistic reasoning tasks is also less depen-
dent on IQ than might be expected (e.g., Rychlicka & Necka, 1990). Does
it mean that the definition of intelligence as problem-solving efficiency is
not valid or that problems like the Tower of Hanoi or syllogistic inference
do not need much intelligence? To answer this question we have to realize
that many experimental tasks are puzzles rather than problems (Eysenck &
Keane, 1995), that is, they usually involve some kind of trap. The ability
to disclose hidden traps may be a prerequisite of human intelligence, but
probably not the most important one. Additionally, many experimental
tasks, especially syllogisms, are presented in the abstract form which pre-
cludes low 1Q people from the process of solution. The very essence of
deductive reasoning as reaching conclusions exclusively on the basis of the
content of the premises, while ignoring other sources of information (e.g.,
common sense), is probably not clear for the majority of people. If less intel-
ligent persons cannot tackle such problems, research samples are usually
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restricted in range concerning the distribution of IQ, so the relationships
between intelligence and problem-solving efficiency must be concealed.
Finally, traditional IQ tests consist of rather specific and homogeneous
items, mostly relying on inductive reasoning processes. So, their being
weakly correlated with problem-solving effectiveness may result from
specificity of IQ tests, specificity of typical problem-solving tasks, or both.

On the other hand, the use of more complex and real-life problems
brings about interesting results concerning the role of psychometric intel-
ligence. For instance, Wittmann and Stfs (1999) employed three comput-
erized simulation tasks that required management of a power station, a
textile manufacturer, and a high-tech company. These tasks involved from
four to more than one hundred variables to control, so their complexity
was overwhelming compared to the puzzles widely used in laboratory ex-
periments. The researchers obtained correlation coefficients of about r = .4
between psychometric measures of the reasoning ability and performance
on the simulation tasks. The aggregated index of joint performance on
three simulation tasks correlated with the reasoning factor at the level of
r = .5607. Other factors (e.g., speed, memory, or creativity) appeared less
important as predictors of simulation task performance. Similar results
have been obtained in other studies employing complex simulation tasks
(e.g., Tucker & Warr, 1996; Rigas et al., 2002). As we can see, using prob-
lems rather than puzzles is a means of examining the actual relationship
between intelligence and problem-solving efficiency.

But sometimes even puzzles can work, provided that they form a
long series of thoroughly elaborated items. In the study reported by
Janet Davidson (1995), participants solved a series of insight problems.
Such problems are much less complex than simulations, and they usually
involve overcoming some mental trap. However, participants obtained
two booklets, each consisting of up to 24 problems. Moreover, the author
deliberately prepared these problems in order to stimulate the processes of
selective encoding, comparison, and combination, which are supposedly
responsible for insight problem solving. In the cued condition the infor-
mation vital to a proper solution was underlined, whereas in the control
condition it was not. The author observed the correlation coefficients be-
tween IQ and insight task accuracy at the level of r = .65 (uncued condition)
and r = .60 (cued condition). So, even relatively simple tasks that involve
mental traps are able to differentiate high and low IQ people, provided that
they are presented in long series. Maybe it is the low reliability of many
experimental tasks that is responsible for the lack of significant correla-
tions between IQ and problem-solving efficiency. Increasing the number
of items is the simplest possible way to raise reliability indices, and this is
a conclusion that we can draw from Davidson’s study.

In our own approach (Orzechowski, 1999) we investigated the com-
plex interactive relationships between psychometric intelligence, basic
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cognitive mechanisms of short-term memory and attention, and the par-
allel versus sequential organization of information processing (OIP). The
paradigm adopted in these studies amounted to the presentation of non-
verbal analogies (cf. Sternberg, 1977). Consecutive parts of each task were
activated on the screen by the participant in the self-paced procedure. In the
“freewheeling” condition, formerly activated portions did not disappear
from the screen, whereas in the “forced” condition they did. In this way, the
“freewheeling” condition allowed either parallel or sequential organiza-
tion of information processing, whereas the “forced” condition definitely
encouraged the sequential mode. According to our assumptions, this asym-
metry should cause quite different consequences for people who differ in
their preferred OIP. A person who prefers the parallel mode of processing
should lose much more in the “forced” condition than a person who prefers
the sequential mode. This is expected because the former person has to op-
erate in conditions that are unfavorable to his or her natural preferences,
whereas the latter person does not have to face any incongruity between
the task conditions and his or her preferences. Thus, if we compute the
reaction time differences between forced and freewheeling conditions, we
should be able to know the preferred mode of OIP of a specific person.
Having assessed the natural preferences of participants concerning OIP,
we could check how these differences interacted with the general mental
ability in determination of performance on the analogical reasoning task.
As we can see (Fig. 2), low 1Q people committed more errors than high IQ
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FIGURE 2. The number of errors in an analogical reasoning task depending on intel-
ligence and the parallel versus sequential organization of information processing.
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participants and the “parallel group” was more accurate than the “sequen-
tial group.” But the most efficient problem solving was demonstrated by
people of increased intelligence and parallel mode of OIP. Further anal-
ysis of this interaction revealed that intelligent people who preferred the
parallel mode of OIP were not dependent on structural limitations of the
information processing system. Two limitations were taken into account
in these studies: capacity of short-term memory and amount of attentional
resources. Persons of lower intelligence, as well as the ones of higher intel-
ligence but with sequential OIP, depended on their individual parameters
of STM and attention to a great extent. In their case, accuracy of analog-
ical reasoning was determined by the individual capacity of processing
resources, like short-term memory and attention. In the case of intelligent
persons with parallel OIP, such relationships did not emerge. Hence, we
can conclude that the parallel OIP increases one’s level of competence in
inductive reasoning tasks if it is accompanied by a high level of general
cognitive ability.

To account for these findings, we propose the theoretical model included
in Figure 3. Efficiency of analogical reasoning is hypothetically determined
by processing capacities (efficient working memory, capacious STM, and
resourceful attention), by the organization of information processing (par-
allel rather than sequential), and by intelligence understood here as a set of
metacognitive skills. Processing capacities are important to psychometric
intelligence, and to some extent they decide on its level of development

INTELLIGENCE
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FIGURE 3. Theoretical model of the determination of efficiency of analogical reason-
ing by processing resources (STM and attention), parallel or sequential organization
of information processing, and general intelligence.
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(Conway et al., 2002; Hunt & Lansman, 1982). But obviously intelligence
is not reducible to working memory, short-term memory, or attentional
resources. Otherwise, we would not be able to obtain results showing that
resourceful processing capacities sometimes lose their importance in com-
plex cognitive tasks if the parallel mode of organization of information
processing is switched on. Moreover, merely talking about people who are
resourceful but not intelligent, or intelligent but not resourceful, would be
nonsensical. For these reasons, the suggested model refers to three kinds of
intelligence (Fig. 3, shadowed areas): one is rooted in the efficiency of neural
mechanisms, another is equivalent to the amount of available processing
resources, and the third consists of the metacognitive skills of monitor-
ing and cognitive control. Thanks to these skills, parallel OIP is flexibly
switched on in order to increase one’s accuracy of reasoning as soon as the
processes of monitoring suggest doing so.

According to the model, processing capacities are vital for reasoning as
long as the level of metacognitive intelligence is low. They are also impor-
tantif its level is high but accompanied by sequential OIP. These capacities
lose their importance, however, as soon as a person starts to process in-
formation in the parallel mode. For that, a person needs highly developed
metacognitive skills, which constantly monitor cognitive processes and
are able to intervene if it is advisable. From this point of view, the joint in-
fluence of metacognitive intelligence and OIP is more important than the
influence of processing capacities alone because the former may substitute
for the latter but not vice versa. In other words, parallel OIP accompanied
by a high level of metacognitive intelligence is indispensable as a condi-
tion for successful dealing with analogical reasoning tasks (solid lines),
whereas resourceful processing capacities are not (dotted lines). The pro-
posed model relies on the distinction between various kinds and sources
of intelligence, with particular stress put on the mechanisms of monitoring
and cognitive control. The significance of such skills for our understanding
of human intelligence is systematically discussed in the next section.

METACOGNITION AND INTELLIGENCE

Cognitive psychologists divide mental phenomena into cognition and
metacognition (Brown, 1978; Flavell, 1979). The former term refers to regu-
lar information processing, which is directly responsible for the execution
of cognitive tasks, whereas the latter involves the processes of monitor-
ing and control, thanks to which regular cognitive processes are executed
in the appropriate order and according to some superordinate rules. As
long as the mind only “knows” what is going on at the basic level of in-
formation processing, we can speak about the bottom-up phenomenon
of monitoring. Once it begins to “govern” the basic processes, we refer
to the top-down phenomenon of control. Metacognitive functions usually
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require atleast some amount of consciousness (e.g., the feeling of knowing),
although there seem to exist processes of monitoring and control of which
we are not fully aware (Moses & Baird, 1999). For instance, we can be aware
of feedback information that is vital for efficient control of our mental as
well as motor actions, although we are usually not able to know any details
of the execution of the control processes. Similarly, we sometimes know
consciously that a response is unwanted and should be inhibited but we
are unable to know how to implement the inhibition processes themselves.

Sternberg’s (1985) triarchic theory is probably the best recognized
and most influential attempt to link human intelligence with metacog-
nition. The author divided mental processes into the performance com-
ponents, which are responsible for direct execution of cognitive tasks, the
knowledge-acquisition components, responsible for the intake of informa-
tion, and the metacomponents, responsible for monitoring and control.
As many as ten specific functions have been ascribed to metacomponents:
(1) problem finding, (2) problem definition, (3) choice of the set of necessary
performance components, (4) choice of the optimal strategy of composition
of these components, (5) appropriate mental representation of the problem,
(6) attention deployment, (7) monitoring of the problem-solving imple-
mentation, (8) feedback reception, (9) feedback processing, and (10) prac-
tical implementation of feedback information. Sternberg believes that the
proper use of metacomponents is responsible for the adequacy with which
people tackle complex cognitive tasks, including intelligence tests. He also
formulates the hypothesis that the general mental ability (g factor) may be
explicable in terms of the general nature of metacomponents, which take
part in every mental activity.

Empirical studies of the relationships between metacognition and intel-
ligence belong to two categories, depending on their research paradigm.
These are the studies on cognitive strategies and cognitive control.

Cognitive Strategies

Cognitive strategy is a distinctive mode of dealing with a task or class
of tasks. People are capable of accomplishing various cognitive tasks us-
ing many different tactics of almost equal efficiency. For instance, there
are good reasons to talk about pictorial versus verbal strategy for tackling
spatial orientation tasks, or about the analytical versus synthetic mode of
dealing with block design tasks (Rozencwajg & Corroyer, 2002). Strategies
are not abilities because, instead of referring to the “better-worse” dimen-
sion of intellectual performance, which is typical of psychometrics, they
pertain to the manner in which cognitive tasks are performed. There is
usually no reason to treat some strategies as better than others; their choice
and use is therefore a matter of preference rather than abilities.
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Relationships between intelligence and cognitive strategies have been
studied in several ways. First, researchers sought to determine whether in-
telligent people show any preference concerning the choice of a particular
strategy. In the study by Kossowska and Necka (1994) participants were
presented with a series of analogical reasoning problems. Presentation of
consecutive portions of every task was self-paced, so participants could
take as much time to read them as they wished. Pieces of information that
had been presented earlier did not disappear from the screen; therefore
they could be analyzed either one by one in the order of their appearance,
or concurrently after the last piece of information had been assimilated.
The authors assumed that, if a certain participant paid adequate attention
to initial stages of analogical reasoning, he or she should be assigned to
the “analytical strategy” group. If somebody tended to speed up the pace
of presentation in order to obtain quickly the entire information available,
he or she should be assigned to the “holistic strategy” group. The holistic
approach amounts to processing simultaneously all the available informa-
tion, whereas the analytic approach takes advantage of proceeding succes-
sively from one piece of information to another. It appeared that high 1Q
participants preferred the analytical strategy over the holistic one. Using a
completely different research paradigm, Rozencwajg and Corroyer (2002)
recently demonstrated that what they call to be the “synthetic” strategy
of solving a block design task was typical of younger children, whereas
older participants preferred the analytical strategy. Does it mean that the
analytical strategy is in itself more intelligent than the holistic one? Not
necessarily. The analytical strategy is more demanding for working mem-
ory because it requires that relevant pieces of information be kept in mind
until the end of the reasoning process. Therefore, the preference of intelli-
gent people to this kind of strategy may result from their being endowed
with more capacious short-term storage (Conway et al., 2002; Kyllonen &
Christal, 1990; Necka, 1992). For less endowed persons, preference of the
holistic strategy may be much wiser.

The mechanism of proper choice of strategy illustrates the importance of
compatibility between ability profiles and the use of strategy. Such compat-
ibility has been demonstrated in a number of studies. Kyllonen, Lohman,
and Woltz (1984) presented their participants with a series of geometrical
figures which were to be memorized, adjoined to each other, and finally
compared with a probe figure. Thus, the task was devised to engage both
visual working memory and reasoning ability. Some participants memo-
rized consecutive figures step by step, with an attempt to synthesize them
as early as possible (synthesis strategy). Others concentrated on the probe
figure and, having it in mind, tried to retrieve from immediate memory the
figures that were presented earlier (backward search strategy). Still others
applied mixed strategies, relying on either synthesis or backward search.
These mixed approaches appeared typically for high IQ participants, which
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was rather adaptive for them because different items of the experimen-
tal procedures might have called for different modes of thinking. It also
appeared that people whose various mental abilities remained approxi-
mately at the same level of development were more likely to choose one
of the mixed strategies. This preference was adaptive, too, because mixed
strategies require that various cognitive components be sufficiently devel-
oped. The study also demonstrated that people who tended to choose the
synthesis strategy were characterized by increased levels of spatial ability
and visual working memory span, whereas people who tended to choose
the backward search strategy obtained generally low indices in the whole
battery of cognitive tests. It can therefore be concluded that there is a kind
of compatibility between preferences toward certain cognitive strategies
and levels of development of cognitive abilities that may be necessary to
use them. Lack of such compatibility probably results in inadequacy of
dealing with a task.

It also appears that intelligent persons show plasticity concerning the
change of cognitive strategy. MacLeod, Hunt, and Mathews (1978) pre-
sented participants with the sentence—picture verification task (Clark &
Chase, 1972), where the subject decides whether the content of a sentence
corresponds to the content of a picture. In this task, people have two strate-
gies to choose from. Sometimes they start with building up a mental repre-
sentation of the situation illustrated by the picture and then they proceed
to verify whether the sentence is an accurate description of the picture.
This strategy is called verbal. In this case the time of verification depends
on the grammatical complexity of the sentence. Sometimes people start
with building up a mental representation of the meaning of a sentence and
afterward they compare this representation with the graphic content of the
picture. This strategy is called pictorial. In that case, the time of verification
does not depend on the complexity of the sentence because its meaning
is represented in the person’s mind before the process of verification be-
gins. MacLeod et al. (1978) demonstrated that the majority of participants
chose the verbal strategy. They also taught their participants to use one of
these strategies, and then they changed the experimental conditions so as
to make the opposite strategy more advisable. It appeared that people who
scored high on psychometric tests of intelligence demonstrated easiness in
switching the cognitive strategy. The authors concluded that intelligence is
related to increased plasticity of the use and choice of cognitive strategies
(Hunt, 1980; MacLeod et al., 1978).

Furthermore, cognitive strategies sometimes operate as a means of com-
pensation for the lack of abilities. A study by Kossowska (1996) observed
complex interactions among strategies, abilities, and personality traits.
Openness to experience, measured by the Big Five personality question-
naire, appeared particularly important as a modifier of the strategy/ability
relationships. For instance, increased levels of openness complemented
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with the verbal strategy helped to improve the participants’ scores in an
intelligence test, as did low levels of openness accompanied by the pic-
torial strategy. Other combinations of openness and cognitive strategies
appeared less adaptive. As we can see, cognitive strategies are not “intelli-
gent” or “stupid” by themselves; rather, they cooperate with other dimen-
sions of individual differences, thus causing the desirable effects. It is also
worth mentioning that strategies are able to compensate for the lack of
abilities, particularly if complemented by certain personality dimensions,
although theoretical meaning of this phenomenon is unclear.

Cognitive Control

Higher-order cognition is closely linked to the processes of cognitive con-
trol. These processes are responsible for the supervisory operations, at-
tributed by Allan Baddeley (1986, 1996) to the “central executive” part of
the working memory system and by Norman and Shallice (1986) to the
“supervisory attentional system” (SAS). The executive functions include
attention deployment, attention switching, updating of the content of the
short-term store, and inhibition of irrelevant information or unwanted be-
havioral tendencies (Miyake & Shah, 1999). Cognitive control is believed to
be crucially important for execution of the processes that are resourceful,
effortful, and not automatic. For that reason, this mechanism is a “natural”
candidate for the job of being responsible for the development of human
intelligence.

The importance of control processes for individual differences in intel-
ligence has been demonstrated by Susan Embretson (1995). She assumed
that general mental ability depends on two factors: working memory ca-
pacity and efficiency of control processes. The latter is responsible for the
appropriate and orderly utilization of the processing space supplied by the
short-term store. A relatively less capacious store may work much better
than a sizeable one, provided that a good strategy is employed. Embretson
invented 130 new items for what she labeled the Abstract Reasoning Test.
These items differed in the number of relations needed to keep in mind
in order to solve the certain item. Thus, the items varied in terms of the
demand they put on working memory. People differ in their individual
capacity of working memory, so, according to Embretson, they should
deal with various test items at different levels of accuracy, depending on
the complexity of these items. Moreover, the author assumed that if two
persons are dealing with items of the same level of complexity, and they
still differ in accuracy, these differences probably result from the efficiency
of control processes rather than short-term memory capacity. In this way,
Embretson was able to assess the extent to which the individual differences
in the general mental ability are explainable by working memory capacity
or by the processes of cognitive control. It appeared that the former factor
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explained 48% of variance, the latter factor accounted for 71% of variance,
and the joint activity of both factors was able to account for as much as
92% of variance of the intelligence test scores (Embretson, 1995).

In our own approach (Necka, 1999; Necka, Gruszka, & Orzechowski,
1996) we adopted the interference tasks as a means to measure the strength
of cognitive control. Such tasks as the Stroop (1935) or Navon (1977) involve
an element of incongruity between various aspects of the stimulus mate-
rial. For instance, the word “green” may be written with red ink, and the
task is to identify the color of the ink instead of reading the word (Stroop,
1935). Or, a person is presented with a capital letter “T” built of small let-
ters “r,” and the task is to identify the building letters instead of reading
the dominant capital letter. People doing the incongruity tasks have to
suppress the prevailing response tendency (e.g., to read the colorful word
or to identify the dominant letter) in order to give an unusual and much
less automatic response. This is an effortful, slow, and error-prone activity.
Efficacy of cognitive control is therefore estimated as a difference score;
reaction time in the control condition is subtracted from reaction time in
the incongruity condition. If the result is relatively small, the mechanism
of cognitive control is judged to be efficient. Hence, if intelligent people are
characterized by increased efficiency of cognitive control, we should pre-
dict negative correlations between mental ability measures and the indices
of the strength of cognitive control.

Such correlations have been obtained, indeed, in two studies reported
by Necka (1999). Participants performed the Navon task in four consecu-
tive series in which the indices of the strength of cognitive control were
computed. Additionally, they completed two ability tests, referring to the
fluid and crystallized intelligence (Raven’s matrices and verbal analogies,
respectively). We observed that correlation coefficients between the indices
of the strength of cognitive control and ability measures were always nega-
tive and statistically significant (Table 1), although these associations were
slightly weaker in the case of the verbal test of intelligence. In an earlier
study (Necka et al., 1996), a group of 36 gifted adolescents performed both

TABLE 1. Psychometric Intelligence and the Indices of Strength
of Cognitive Control (Necka, 1999, p. 171)

Raven’s Matrices Verbal Analogies
I-C, series 1 —.28 —.13
I-C, series 2 —.33 —.22
I-C, series 3 —.25 —.24
I-C, series 4 —.21 —.16

Note: 1-C is the difference between mean reaction time in the incon-
gruent condition and mean reaction time in the congruent condition.
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the Stroop and the Navon tasks. Compared to their nongifted control peers,
the gifted participants obtained better indices for the strength of cognitive
control only in the Navon task. The absence of similar results in the Stroop
task suggests that either the cognitive control is domain-specific rather than
general phenomenon or the Stroop task does not allow the precise estima-
tion of the strength of cognitive control. The Navon task draws on verbal
material that is highly overlearned and automatically processed, whereas
the Stroop task requires the quite “exotic” skill of naming the color of the
ink. The increased ability of gifted people to resist interference in the for-
mer case may suggest that cognitive control is particularly important in
domains that are closer to one’s intellectual functioning.

Strength of cognitive control has also been investigated in creativity
studies (Groborz & Necka, 2003), where people scoring high on diver-
gent thinking tests obtained better indices of cognitive control. Moreover,
cognitive control was associated with the originality of one’s productions
but not with fluency or flexibility. Among many indices of creative abilities,
originality is closely linked to the quality of one’s productions, although all
indices are quantitative in terms of computations needed to obtain them.
This study defined fluency as the number of produced ideas, flexibility as
the number of categories into which the produced ideas could be included,
and originality as the number of ideas that were infrequent or unique in the
sample. So, the obtained results suggest that cognitive control may prevent
a person from producing many ideas withno apparent value, which is often
the case with people scoring high on fluency and flexibility but low on orig-
inality. Moreover, we demonstrated that the increased strength of control
characterizes people who are able to judge other participants” productions
more accurately. For instance, a participant was asked to assess the level of
originality of ideas produced by another participant. His or her subjective
assessment was subsequently compared to the actual level of originality,
based on the distribution of responses observed in the whole sample of
participants. In this way, the accuracy of one’s assessments could be eval-
uated and correlated with the indices of strength of cognitive control, with
positive results. It may therefore be concluded that efficiency of cognitive
control is an important source of individual differences in broadly defined
intelligence, including creative thinking skills.

CONCLUDING REMARKS

The review presented in this chapter clearly shows that higher-order cog-
nitive processes are vital for our understanding of human intelligence.
The use of complex tasks increases the level of ecological and theoretical
validity of psychological experiments. Complex tasks are much more sim-
ilar than elementary cognitive tasks to what people do in real life. Their
usage is also better grounded in theories and definitions of intelligence.
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On the other hand, this review demonstrated the weaknesses of the
top-down approach to intelligence research. These weaknesses are mostly
rooted in methodological problems connected with studying complex
mental phenomena. First, we can speak about something like the complex-
ity trap. Many problem-solving tasks are too difficult to be tackled effec-
tively by people of low intelligence. For instance, the syllogistic reasoning
tasks may be confronted only by people who understand the essence of
logical thinking. Syllogisms are particularly difficult if they are expressed
in the abstract form and if the task consists in overcoming “common sense”
in order to give way to the “pure” logic. For that reason, only high IQ peo-
ple can take part in many syllogistic reasoning experiments. Consequently,
experimental samples are severely restricted in IQ range; that is, they are
homogeneous concerning the distribution of intelligence test scores. Some
simulation problems are also quite difficult to understand for an average
person. The more complex our experimental tasks are, the more they re-
semble real-life situations, and the more they are supposed to reflecthuman
intellectual capability. At the same time, we are less and less able to inves-
tigate the actual relationship between intelligence and competence with
which people tackle such tasks.

Second, we should not ignore the role of motivational factors in people’s
dealing with complex tasks. Such tasks need a lot of time to be solved; there-
fore, they may provide a good estimation of one’s endurance, patience, or
diligence rather than intelligence. Susceptibility to boredom (Zuckerman,
1979) and other personality factors also play a role in human performance
on complex tasks. For that reason, usage of complex tasks is risky because
we have to control numerous factors which are difficult to control and
mostly not intellectual in nature. It is trivial to say that human behavior
is determined by many different factors. Experimental cognitive psychol-
ogists usually reduce the number of these factors through careful control
of variables and simplification of mental tasks people are supposed to do.
But how much simplicity can we allow in order to avoid the criticism
of oversimplification? It seems that, at least in the field of human intel-
ligence, simple and complex cognition are equally important. Therefore,
simple and complex cognitive tasks should be used in our experiments as
complementary rather than competing approaches.
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Ability Determinants of Individual Differences
in Skilled Performance

Phillip L. Ackerman

At the most fundamental level, the relationship between intelligence and
learning is close and convincing. Indeed, the modern era of intelligence
assessment is identified with the critical success of Binet and Simon (1905)
in their development of a set of scales that provided valid predictions of
school success. These scales, or similar assessments inspired by this ap-
proach (such as the Wechsler Intelligence Scale for Children; Wechsler,
1949), continue to represent the best predictors of school success. School
success, at least for children and adolescents, is considered by many to
be the indicator of learning achievement. While this analysis works quite
well for global measures of learning, there is far less utility of omnibus IQ-
type measures for predicting individual differences in narrower domains
of learning. If we want to predict which students will excel in learning a
musical instrument, mastering power tools, or becoming adept at a par-
ticular sport, or even which students will become the fastest typists, the
relationship between intelligence and learning appears to be much more
complicated.

Part of the reason why IQ-type measures are less valid for predicting
individual differences in skilled performance has to do with the relative
“bandwidth” of the assessment instrument and the breadth of the criterion,
or what has been referred to as a lack of Brunswik symmetry (Wittmann &
Sufi, 1999). That is, IQ tests have high bandwidth — they are typically con-
structed from as many as a dozen different scales (e.g., memory, reason-
ing, vocabulary, math, etc.). Measures of academic achievement such as
cumulative grade point average are similarly broad — thus the breadth of
the predictor measure matches the breadth of the criterion. Measures of
skilled performance, such as typing speed and accuracy, are quite narrow
in scope. When compared against an 1Q predictor, there is a substantial
mismatch between the breadths of the predictor and the criterion, which
ordinarily yields a much lower validity index. There is, of course, more
to the story. The rest of this chapter is devoted to a brief review of the
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critical theoretical issues and empirical data associated with ability—skilled
performance relations.

A BRIEF HISTORICAL REVIEW

Psychologists have long been interested in the nature of skill acquisi-
tion and skilled performance. One of the first major studies in this field
concerned the acquisition of skilled performance in telegraphy (Bryan &
Harter, 1899), a skill which is now long obsolete. Nonetheless, such studies
described skills in terms of a hierarchy, such that initial learning focused
on small units of learning (such as letters) and only later on larger units
(such as words or phrases). Indeed, many skills have similar character-
istics, such as the development of skilled reading (e.g., see Frederiksen,
Warren, & Rosebery, 1985) or playing chess (e.g., see Ericsson & Lehmann,
1996, for a review). As a general descriptive framework, Fitts and Posner
(1967) described skill acquisition as a three-stage process. The first stage
(called “cognitive”) occurs when the learner first confronts the task. At
this stage, the learner must encode rules and develop strategies for task
accomplishment. This stage is highly dependent on the kinds of specific
abilities that underlie general intellectual abilities (such as memory, reason-
ing, and particular content abilities, such as verbal, spatial, or numerical
abilities, depending on the task content). Performance during this stage of
skill acquisition is slow, effortful, and error-prone. The second stage was
described by Fitts and Posner as the “associative” stage. That is, once the
learner has mastered the general rules for task accomplishment, he/she
seeks to make the process of performance more efficient, for example, by
eliminating inefficient or unnecessary steps. During this stage of skilled
performance, the task is accomplished much more quickly than in the first
stage, but there are occasional errors as the learner tries to streamline the
procedures for task accomplishment. Effort is still needed to perform the
task, and effort is further needed to make additional refinements and im-
provements to the skill. The third stage of skill acquisition was referred to
as the “autonomous” stage. Performance at this stage is fast and character-
ized by few errors. Learners who reach this stage of skilled performance
can frequently perform the task almost or completely effortlessly, even
when attention is diverted to other activities.

The task of driving an automobile provides a good example of these
stages of skill acquisition. When a learner is first confronted with the vast
array of controls and displays, the task of driving can seem almost over-
whelming (especially with a manual transmission car). The student has to
remember to visually sample the speedometer, the view out of the wind-
shield, and the mirrors for traffic, while trying to control the steering, ac-
celerator, brake, and so on. The idea of trying to change radio stations or
talking on the cell phone at the same time one is trying to drive around
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a parking lot would be rejected as overwhelming by almost all but the
most efficacious performers at this stage of learning. However, after per-
haps only tens of hours of practice, the learner usually has internalized a
strategy for sampling the displays and controlling the vehicle. He or she
may both be reasonably competent and feel reasonably confident in driv-
ing, even though performance is not entirely smooth, and both planning
efficiency and reaction speed are suboptimal. With only a few additional
months of practice, however, the student driver can perform the task rel-
atively effortlessly, with a low error rate (even though performance will
normally continue to improve over the next several years of practice).

A year after initially trying the task of driving, the learner can effectively
operate the vehicle with only limited attention devoted to the operation
of the car. Changing radio stations or carrying on a conversation under
such circumstances rarely results in losing control of the vehicle. The key
to the transition from cognitive, to associative, to autonomous skilled per-
formance is consistent practice. That is, the nature of the task is constant, the
controls work in the same way from one occasion to the next, and exten-
sive practice leads to substantial improvement in the speed and accuracy of
performance, for most learners. This is not to say that every student learner
is capable of becoming a world-class racing car driver. The difference be-
tween driving to the local grocery store and driving around a track at high
speed is partly a function of the speed with which decisions need to be
made and implemented and partly because inconsistencies are introduced
in the control of vehicles that operate at their physical limits. Under such
circumstances, performance is not autonomous but is highly effortful and
error-prone, because the tolerances are so much smaller than they are in
normal everyday driving. Also, it is important to note two points of which
most drivers (and pedestrians) are painfully aware: (a) even though most
drivers can adequately perform the task, there exist individual differences
in performance of a sizable magnitude, and (b) although driving can fre-
quently be performed with only a limited amount of attention, increased
levels of attention result in performance improvements.

THEORY AND CONTROVERSY

Early modern psychologists who proposed that intelligence was the “abil-
ity to learn” (e.g., see Thorndike, 1924) were frequently frustrated in ob-
taining confirmatory evidence for the proposition when considering spe-
cific tasks rather than broad measures of academic achievement (e.g., see
Woodrow, 1946). There were two major impediments to the evaluation of
the relationship between overall intelligence (or more narrow intellectual
abilities) and learning. The first impediment was the operationalization
of “learning” per se. That is, within traditional learning theory, degree of
learning is defined as the difference between an initial state of knowledge
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or skill and a final state of knowledge or skill (typically after some inter-
vention or practice). Unfortunately, difference scores have some relatively
undesirable psychometric properties when it comes to evaluating individ-
ual differences (e.g., see Cronbach & Furby, 1970). When two measures are
substantially correlated (as in a pretest and post-test in skill learning), the
reliability of the difference score declines. So, when investigators examined
“learning scores” for correlations with intelligence, they frequently found
very low correlations — yielding the rather counterintuitive finding that
intelligence did not appear to be related to learning (e.g., see Ackerman,
1987, for a review). For most of these studies, though, the finding is, to a
nontrivial degree, a statistical artifact that results from the low reliability
of difference scores, rather than a specific demonstration that intelligence
and learning are orthogonal (i.e., uncorrelated) constructs (e.g., see recent
discussion by Lohman, 1999).

The second impediment toward demonstrating a relationship between
intelligence and specific-task learning is more subtle than a statistical ar-
tifact. This impediment was due to the fact that, with the exception of
relatively rare tasks (such as concept attainment or simple conditioning;
see Zeaman & House, 1967), there are substantial individual differences
in task performance, even on the first task trial. A brief example illustrates
this problem. In a standard skill learning paradigm, the learners are pre-
sented with a series of instructions on how to perform the task. Frequently,
the learners are presented with a few, unscored “practice trials” just to
familiarize them with what is required in the task. After the instructions
and practice trials, the learner is presented with the main task trials, and
then a series of practice trials, leading up to the final practice or criterion
performance assessment. Even on the first scored task trial, there are large
individual differences in levels of performance. In fact, the initial task trials
often have higher variability in performance than post-practice task per-
formance (see Ackerman, 1988; Ackerman & Woltz, 1994; Adams, 1957,
for several examples of declining inter-individual variance with consis-
tent task practice; also see Ackerman, 1987, for a review and re-analysis of
24 early studies of individual differences in skill learning).

One way to characterize this phenomenon is to consider that some in-
dividuals e