
Journal of Vocational Behavior 29, 301-331 (1986) 

MAJOR CONTRIBUTIONS 

g: Artifact or Reality? 

ARTHUR R. JENSEN 

School of Education, University of California, Berkeley 

The highest common factor in any large and diverse collection of mental tests 
is measured by means of factor analysis, and is conventionally labeled psychometric 
g (for general ability). The g factor, which is highly correlated across even quite 
different batteries of tests, provided the tests are fairly numerous and varied, 
reflects the empirical fact of positive manifold, that is, positive correlations 
between all mental tests. After briefly explicating the genera) psychometric con- 
ditions and factor analytic methods for the measurement of g, this article addresses 
the theoretically important question of whether g is merely an artifact of the 
method of constructing psychometric tests and the mathematical operations of 
factor analysis or whether it has an authentic claim to represent some natural 
phenomenon that exists independently of psychometrics and factor analysis. 
Several lines of evidence which refute the argument that g is a methodological 
artifact are presented. The g factor, far more than any other linearly independent 
sources of variance in psychometric tests, is correlated with various phenomena 
that are wholly independent of both psychometrics and factor analysis, such as 
the heritability of test scores, familial correlations, the effects of inbreeding 
depression and of hybrid vigor, evoked electrical potentials of the brain, and 
reaction times to elementary cognitive tasks which have virtually no intellectual 
content. This evidence of biological correlates of g supports the theory that g 
is not a methodological artifact but is, indeed, a fact of nature. However, the 
causal nature of g itself is not yet scientifically established. That goal must await 
further advances in neuroscience. Q 1986 Academic press, IIK. 

The hypothesis of general mental ability, in which human individual 
differences range widely, was first formally propounded by Sir Francis 
Gahon (1869). Galton’s hypothesis was not subjected to rigorous empirical 
scrutiny, however, until there was developed a methodology adequate 
to the task. The great pioneer in this development was Charles Spear-man 
(1904, 1927), whose invention of factor analysis made the construct of 
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general ability the subject of some 80 years of empirical inquiry and 
controversy in the field of psychometrics. 

In the realm of mental tests, general ability is referred to more specifically 
as psychometric g, or more briefly as just g, the designation originated 
by Spearman. Spearman’s g, however, because of its intimate connection 
with mental tests and the mathematical operations of factor analysis, 
became a rather narrower conception of general ability than Galton’s 
notion. Galton conceived of general ability more broadly in essentially 
biological and evolutionary terms. But Galton’s view faded into the back- 
ground as the theory of general ability became exclusively identified with 
the g derived from the factor analysis of mental tests by Spearman and 
his many successors in psychometric research on individual differences. 

The exclusive dependence on conventional psychometric tests and on 
the complex mathematical technology of factor analysis as the basis of 
the argument for the existence of g has given rise to one of the most 
fundamental and contentious questions in this field. It is this: Is g merely 
a methodological artifact, that is, merely a product of psychometric 
testing and the mathematical manipulations of applying factor analysis 
to the intercorrelations of various tests? Or does the g revealed by factor 
analysis reelect a reality that exists independently of psychometric tests 
and factor analysis? Virtually no one today disputes that a g factor can 
be extracted from the correlations among any large and diverse collection 
of mental ability tests, and that the g factor is usually substantial in the 
sense of subsuming a relatively large proportion of the total variance in 
all of the tests as compared with other factors besides g. The point that 
is being questioned is whether the g factor represents any reality outside 
the operations of psychometric tests and factor analysis. Is g actually 
the Galtonian notion of general ability as a biological reality, or is this 
concept properly restricted to its more limited Spearmanian or exclusively 
psychometric meaning? Before we can even begin to examine this question, 
we should review some of the well-established facts about g strictly 
within its own realm of psychometrics and the factor analysis of con- 
ventional mental tests. 

An item is the elemental unit of a mental test. An item is a specific 
mental task to which a person’s overt response can be objectively scored, 
that is, classified or quantified (e.g., “right” or “wrong” = 1 or 0), 
graded on a scale (e.g., “poor,” “fair,” “good,” “excellent” = 0, 1, 
2, 3), counted (e.g., number of digits recalled, number of parts of a 
puzzle fitted together within a given time limit), or measured on a ratio 
scale (e.g., the time interval between presentation and completion of a 
task). The scoring is objective in the same sense that all scientific mea- 
surement is objective; that is, there is a high degree of agreement among 
all competent observers making the measurements. Objective measurement 
may depend on special instruments or special training of the observers. 
A task is said to be a mental task if variance (i.e., individual differences) 
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in performance is negligibly attributable to individual differences in sheer 
physical capacities, such as sensory acuity or muscular strength, in the 
population of interest. A task qualifies as an appropriate mental test item 
only if the testee understands the requirements of the task, through 
related prior experience, preliminary instructions by the tester, or practice 
on easy examples with informative feedback as to the correctness of the 
testee’s performance. For an item to be psychometrically useful in a 
test, its variance must be greater than zero in the population of interest; 
that is, there must be nonchance individual differences in scores on the 
item. Items that compose tests of ability (as contrasted with personality, 
attitude, and interest inventories) are also characterized by the property 
that the items are objectively storable in terms of the goodness of the 
testee’s performance, simply in the sense that there is universal agreement 
that, say, the answer “4” to the question, “What is 2 plus 2?” is better 
than the answer “5” (or some other number besides “4”), or that solving 
a puzzle in 2 min is faster than solving it in 3 min, or that recalling 7 
digits indicates a larger memory span than recalling only 5 digits. These 
judgments per se do not concern the social, practical, or moral value of 
the particular performance. All test items are conventionally scored so 
that “goodness” of performance is always represented by a higher score. 

A test is composed of a number oj’items. A test may be composed 
of any finite number of items of any degree of diversity involving different 
sensory and response modalities, different media (words, numbers, sym- 
bols, pictures of familiar things, objects), different types of task require- 
ments (discrimination, generalization, recall, naming, verbal expression, 
manipulation of objects, comparison, decision, inference, etc.), and vari- 
ation in task complexity ranging all the way from simple reaction time 
to inductive and deductive reasoning. The number and variety of items 
in a test are governed by the test constructor’s purpose and the practical 
limitations and cost/benefit ratio for the use of the test in a given setting. 

Single items show generally low but positive correlations with one 
another when administered to large representative samples of the general 
population. Single test items measure very little in common with other 
single items. Most of the variance on a single item is unique to itself, 
that is, it is not correlated with whatever is measured by other test items. 
This is clearly evident from the fact that the interitem correlations in 
standard tests are seldom as high as .20 and are usually closer to .lO. 
Even in a test with a high degree of item homogeneity (i.e., similarity 
of item types), the interitem correlations are surprisingly low. In a large 
random sample of school children, for example, the Ravens Standard 
Progressive Matrices, which probably has greater item homogeneity than 
any other standard intelligence test, shows an average item intercorrelation 
of only + .13. 

The saving grace is the fact that mental test items of virtually all kinds 
are positively correlated with one another in the general population. 
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Negative and zero correlations are almost entirely due to sampling error. 
As sample size increases, the negative and zero correlations decrease 
to the vanishing point. The fact of ubiquitous positive correlations between 
items means they are all measuring something in common, and the larger 
the number of items, the more of this common factor is measured by 
the aggregate. If, in the collection of items that compose a test, the 
single-item scores are summed for each person, we obtain the individual’s 
raw score on the test. The total variance of raw scores on the test in 
the population is equal to the sum of all the single-item variances plus 
twice the sum of all the item covariances. Since, for n item variances, 
there are n(n - 1) item covariances, increasing the number of items in 
a test increases the total item covariance at a greater rate than it increases 
the total item variance. The covariance divided by the total variance is 
the internal consistency reliability of the test, or the proportion of the 
total variance attributable to whatever it is that all of the items measure 
in common. For most standardized tests, this value is generally above 
90. But any collection of ability items, however diverse, will yield a 
similar value, or any value one would like, less than 1, provided a 
sufficient number of items is included in the collection. 

In any large collection of diverse items, the items can be clustered in 
terms of their intercorrelations, grouping various items with the highest 
intercorrelations together to form smaller, more homogeneous, sets of 
items called subtests. Such subtests are usually composed of quite similar 
item types, such as vocabulary items, numerical items, figural items, and 
so forth. Such relatively homogeneous tests can be made to have as high 
internal consistency reliability as one would like simply by including 
more items of the same type. Thus the internal consistency reliability 
of a test is a function of two effects: the average item intercorrelation 
and the number of items. 

All varieties of mental ability tests are positively correlated with one 
another in the general population. Diverse tests, assuming they are com- 
posed of enough items to ensure high internal consistency reliability, 
always show nonzero positive correlations when administered to large, 
unbiased samples of the population. The sizes of the correlations may 
range widely, from near zero to over .90, depending on the diversity of 
the tests, and the average correlation may differ accordingly. But the 
really important fact, which by now has the status of a fact of nature, 
is that the correlations are all positive-a phenomenon termed positive 
manifold-regardless of the diversity of the tests, provided they are 
mental ability tests, as previously defined, and also have adequate reliability 
(since any two tests cannot be more highly correlated than the [geometric] 
mean of their respective reliability coefficients). Apparent violations of 
positive manifold may be observed when a battery of tests is administered 
to samples that are markedly biased with respect to abilities. In the 
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general population, for example, verbal tests and numerical tests are 
very highly correlated. But when such tests are given to a group composed 
of equal numbers of highly selected university students in law and in 
engineering, the correlation between verbal and numerical tests may be 
close to zero or may even be a negative correlation, because law students, 
on average, tend to be relatively high on verbal and low on numerical, 
while engineering students show the opposite pattern. 

No one has yet been able to devise a number of different ability tests 
which, when correlated with one another in a large and representative 
sample of the general population, do not show positive manifold. The 
leading American psychometrician, L. L. Thurstone, spent many years 
trying to devise tests that he hoped would afford pure measures of a 
number of supposedly distinct abilities, such as verbal, numerical, spatial, 
reasoning, and memory. No matter how refined and homogeneous these 
various tests were made, they always displayed substantial positive cor- 
relations with one another, indicating that all of these tests measured 
something in common-a generalfactor-in addition to whatever special 
ability was uniquely measured by each test-abilities that Thurstone 
termed the primary mental abilities. Thurstone’s tests of “primary mental 
abilities” each measured a single general factor common to all of the 
tests in addition to the particular primary ability each test was specifically 
designed to measure. It is now amply apparent that it would be impossible 
to have it otherwise. The phenomenon of positive manifold is about as 
inexorable as gravitation. 

The correlation of each of a number of tests in a battery of tests with 
the general factor common to all of the tests can be determined by the 
technique of factor analysis. Factor analysis is essentially a class of 
mathematical techniques for converting a number of observed variables 
(e.g., test scores) into a usually much smaller number of hypothetical 
variables, called factors, which together represent all or most of the 
variance that any of the observed variables have in common, referred 
to as common factor variance. The total variance in all of the observed 
variables is composed of the common factor variance and the sum of all 
the variances that are unique to each of the variables. The common 
factor variance may be composed of one or more factors, depending on 
the nature of the variables. The factors may be uncorrelated with one 
another (orthogonal factors) or correlated with one another (oblique 
factors), depending on the method of factor analysis. Thus, by means 
of factor analysis one can partition the total variance on an observed 
variable into various hypothetical components consisting of one or more 
factors and the variable’s uniqueness, which is the variance of a single 
variable that it does not have in common with any other variable in the 
set of factor-analyzed variables. The uniqueness of a given observed 
variable consists of two parts: (1) the reliable or true-score variance that 
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is unique to the observed variable, which is termed the specificity of the 
given variable, and (2) the unreliability or error variance in the given 
variable. 

The correlation between an observed variable and a particular hypo- 
thetical factor is termed the factor loading (or, less commonly, factor 
saturation) of the variable on the particular factor. The squared factor 
loading is the proportion of the total variance in the observed variable 
that is “accounted for” by the factor. The sum of an observed variable’s 
squared factor loadings is termed the variable’s communality, or the 
variable’s total common factor variance, conventionally symbolized as 
h2. (The symbol h2 for communality should never be confused with 
heritability, which is also symbolized as h2. Heritability refers to the 
proportion of the total variance in phenotypes that is attributable to 
genetic factors. There is no theoretical connection between communality 
and heritability, and the fact that both concepts share the same symbol, 
h2, is merely an unfortunate coincidence.) 

Just as the matrix of correlations between observed variables can be 
factor analyzed, so too can the correlations between three or more oblique 
(i.e., correlated) factors, thereby yielding one or more higher orderfactors. 
Hence factors can be represented as a hierarchy in terms of their degree 
of generality, going from first-order (or primary) factors, to second-order 
factors, and so on. The highest order factor at the apex of the hierarchical 
factor structure is the general factor, which, following Spearman, is 
conventionally labeled g (always a lowercase g) when the observed variables 
entering into the factor analysis are scores on a wide variety of tests of 
mental abilities. A hierarchical factor structure is illustrated in Fig. 1. 
The connecting lines represent correlations. Each higher level in this 
hierarchical structure is more general than the lower level. Variance that 
is unique to each of the tests is “filtered out” at the level of the primary 
factors; variance that is unique to each of the primary factors is “filtered 
out” at the level of second-order factors, and so on. The g factor is the 

General Factor 

Second-Order Factors 

Primary Factors 

FIG. 1. Example of a hierarchical factor analysis with three levels 
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highest degree of generality. Factors below the general factor in the 
hierarchy are also referred to as group factors, because their variance 
is shared by only certain groups of tests. Prominent group factors are 
verbal, spatial, and numerical. 

The number of levels in the hierarchy and the number of factors at 
each level are mainly a function of the number and diversity of the tests 
that are factor analyzed. When there are relatively few tests, g emerges 
as a second-order factor. A hierarchical factor analysis of the 12 subtests 
of the Wechsler Intelligence Scale for Children (WISC), for example, 
yields three primary factors (verbal, spatial, memory) and only one second- 
order factor (g) (Jensen & Reynolds, 1982). Combining the 13 subtests 
of the Kaufman Assessment Battery for Children (K-ABC) with the 12 
WISC subtests yields the very same factor structure (Naglieri & Jensen, 
in press). 

In an orthogonalized hierarchical factor analysis (Schmid & Leiman, 
1957; Wherry, 1959), each of the factors is uncorrelated with every other 
factor, both within and between all levels of the hierarchy. But the final 
outcome of the analysis yields the loadings (i.e., correlations) of each 
of the tests on each of the uncorrelated factors at each level of the 
hierarchy. In a factor analysis of ability tests, the g factor typically 
accounts for more of the total variance than any of the group factors 
and often accounts for a larger proportion of the total variance in the 
tests than is accounted for by all of the group factors combined. 

Although there are a number of methods of nonhierarchical factor 
analysis in which only the primary factors are extracted, there is now 
a high degree of consensus among researchers studying abilities that a 
hierarchical factor analysis provides the best representation of the cor- 
relational structure of human abilities. The first principal component of 
a correlation matrix can also represent the g factor and is usually very 
highly correlated with the hierarchical g. But tests’ loadings on the first 
principal component are slightly contaminated by some admixture of 
each test’s unique variance in its loading on a principal component. The 
first principal factor of a correlation matrix excludes the unique variance 
and is therefore preferable to the first principal component as a measure 
of g. But both methods are alike in having two main disadvantages: (1) 
They are more strongly affected than is a hierarchical g by psychometric 
sampling, that is, the particular combination and number of the various 
types of tests included in the analysis; and (2) under freakish circumstances, 
which are rare in the abilities domain, they can spuriously create the 
appearance of a general factor in a collection of variables in which there 
is in fact no real general factor and in which a hierarchical analysis would 
yield no general factor at all. As an extreme but clear-cut example, 
consider, say, 10 variables, among which the set of Variables l-5 are 
highly intercorrelated and the set of Variables 6-10 are highly intercor- 
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related, but all the variables in the first set have zero correlations with 
all of the variables in the second set. The first principal component and 
the first principal factor will both show fairly large positive loadings on 
all 10 variables, when there is obviously no general factor that is common 
to all 10 variables. If there existed a true general factor, there should 
be no correlations of zero between any of the variables. A hierarchical 
factor analysis applied to the same sets of correlations described above 
could not yield a general factor; it could yield only a number of primary 
factors or primary factors and two or more higher order factors. But the 
hierarchy would be truncated, without a g factor at the apex. In actual 
fact, however, I have yet to find a collection of psychometric tests for 
which the first principal component, the first principal factor, and the 
hierarchical g are not almost perfectly correlated, with intercorrelations 
typically above .95 and usually close to 99. 

The g factor is quite stable across different collections of diverse 
mental ability tests. Any limited collection of tests may be regarded as 
a sample of the universe of all tests. Therefore, the statistical characteristics 
of any limited collection of tests will not perfectly represent the corre- 
sponding parameters of the universe of tests. In brief, there will be 
psychometric sampling error. The g factor, by any method of extraction, 
is subject to this source of error. The g extracted from one battery of 
tests will not be exactly the same g extracted from a different battery 
of tests. A necessary corollary is that a given test will not show exactly 
the same g loading when factor analyzed in different batteries of tests. 
In brief, the g factor and the g loading of any particular test are not 
invariant across different samples of tests. This fact per se does not 
undermine the construct of g. Some degree of error is ubiquitous in all 
measurement, and this is tme in every empirical science. Inevitable error 
simply calls for proper assessment. If the g of any battery of tests bore 
no resemblance to the g of any other battery, then, of course, g would 
have little, if any, scientific interest and would hardly qualify as ‘an 
important theoretical construct in the theory of human ability. But, in 
fact, quite the opposite is the case. 

The g factor is remarkably stable across different collections of mental 
tests, even collections of tests that bear hardly any superficial resemblance 
to one another. For example, the g of just the six verbal tests of the 
Wechsler Adult Intelligence Scale (WAIS) and the g of just the six 
performance tests are correlated .80. The g of a battery of six diverse 
tests of immediate or short-term memory (paired associates, meaningful 
prose, free recall of words, digit span, memory for forms, memory for 
objects) was found to have a correlation of + .87 with the g of four quite 
different tests (motor speed, vocabulary, arithmetic, form board) (Garrett, 
Bryan, & Perl, 1935). In the most recent and probably most rigorous 
and large-scale study of the stability of g across different test batteries, 
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R. L. Thomdike (in press) made use of 65 highly diverse tests used in 
the armed services and administered to a large sample of enlisted personnel. 
First, Thomdike made up at random 6 nonoverlapping batteries of 8 tests 
each. Then, 17 diverse “target” tests were each singly included in each 
of the 6 test batteries and the g factor (as represented by the first principal 
factor) was extracted from the total of 9 tests in each battery. Hence 
there were obtained 6 g loadings for each of the 17 target tests, resulting 
from including each of the target tests in each of the 6 nonoverlapping 
batteries of diverse tests. The average correlation between the 17 g 
loadings across any two batteries was + .83. In other words, a given 
test was relatively invariant in its g loading despite considerable variation 
between the 6 different test batteries in which it was factor analyzed. A 
test’s composite g loading, that is, the average of its g loadings in all 6 
batteries, would reflect less psychometric sampling error than any single 
g loading. Thus the composite g loading should asymptotically approach 
the test’s “true” g loading as we increase the number of different test 
batteries. Just as we can speak of a hypothetical “true score” on a test, 
we can speak of a hypothetical “true g.” And just as the obtained score 
on a test asymptotically approaches its hypothetical true score as a 
function of the number of items in the test, so, too, the obtained g factor 
of a battery of tests asymptotically approaches the hypothetical true g 
as we increase the number of tests entering into the factor analysis. In 
Thorndike’s study, with just 6 test batteries, each consisting of 8 tests 
besides the target tests, it can be shown that the correlation of the mean 
of the 6 g loadings of each of the 17 tests is correlated + .98 with the 
tests’ hypothetical true g loadings. If larger test batteries had been used, 
the consistency of g across batteries would be even higher. Also, Thomdike 
used as the estimate of g the first principal factor, which is always more 
sensitive to psychometric sampling variation and therefore is less stable 
than is a hierarchical g. 

It is evident from these findings that in the context of psychometric 
tests and factor analysis, the g factor is a highly ubiquitous phenomenon 
and its measurement is highly stable, even across diverse batteries of 
tests. Spearman (1927) summarized this fact in his famous “theorem” 
of “the indifference of the indicator” of g (p. 197). 

At present g is known only by its site, not by its nature. Spearman 
(1927) stated: 

This general factor g, like all measurements anywhere, is primarily not any concrete 
thing but only a value or magnitude. Further, that which this magnitude measures 
has not been defined by declaring what it is like, but only by pointing out where 
it can be found. It consists in just that constituent-whatever it may be-which 
is common to all the abilities inter-connected by the tetrad equation [i.e., Spearman’s 
method for identifying the g factor in a battery of tests]. This way of indicating 
what g means is just as definite as when one indicates a card by staking on the 
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back of it without looking at its face. Such a defining of g by site rather than by 
nature is what was meant originally when its determination was said to be only 
“objective.” Eventually, we may or may not find reason to conclude that g 
measures something that can appropriately be called “intelligence.” Such a con- 
clusion, however, would still never be a definition of g, but only a “statement 
about it.” (Spearman, 1927, pp. 75-76) 

Spearman’s statement is still valid today, if we remain only within the 
confines of psychometrics. We can note differences in the g loadings of 
various tests and try to discern the features that distinguish between 
high- and low-g-loaded tests. When Spearman made such comparisons 
of more than 100 various tests he had factor analyzed, he concluded that 
g is most strongly represented in tests that involve the “eduction of 
relations and correlates” and “abstraction.” A test’s relative standing 
on g could not be inferred from its superficial characteristics, such as 
the sensory or response modality involved, whether verbal or nonverbal, 
numerical or figural, paper-and-pencil test or performance test, or other 
formal features. Vocabulary and block design, for example, are highly 
dissimilar tests in appearance and task requirements, yet they are the 2 
most highly g-loaded tests of all the 12 tests in the Wechsler battery. 
Among various psychometric test items, in general, the size of the g 
factor seems to reflect the amount or complexity of the mental manipulation, 
or cognitive processing, required for the testee to arrive at the correct 
response. A clear example of this is the fact that forward digit span has 
only about half as large a g loading as backward digit span, when both 
subtests are factor analyzed among the 11 other subtests of the WISC 
(Jensen & Figueroa, 1975). 

g is the sine qua non of all intelligence tests. All so-called intelligence 
tests, or “IQ” tests, even when they have not been constructed with 
reference to factor analysis, are found to be very highly g loaded. Yet 
the average correlation between total scores on various standardized IQ 
tests in representative samples of the general population is less than 
perfect-about + .80, or + 90 when corrected for attenuation (Jensen, 
1980, pp. 315-316). The main reason for the lack of perfect correlation, 
besides unreliability, is that various IQ tests, although all are highly g 
loaded, also reflect differing amounts of variance attributable to various 
non-g group factors, such as verbal, spatial, and memory factors, as well 
as reliable nonfactor variance that is specific to each test. 

For scientific purposes it is probably best to identify the concept of 
intelligence with g. Otherwise, as Spearman pointed out, there is no 
possibility for an objective criterion for determining whether a given test 
or battery of tests provides a better or poorer measure of intelligence 
than some other test. To identify intelligence as the totality of all mental 
abilities is a conceptual muddle. Intelligence is not the whole of mental 
ability; besides g there is some indefinite number of primary or group 
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factors independent of g. Hence the construct of intelligence can be most 
precisely distinguished from other abilities by means of factor analysis 
and should not be a label for just any kind of ability in which we can 
observe individual differences. It seems sensible to identify the term 
intelligence with g, because g is the highest common factor in any large 
and diverse collection of tests of various abilities. But there is also 
another good reason to identify intelligence with g. The g factor is more 
highly correlated than any other factors (independent of g) with individual 
differences in those observable behaviors that are most commonly as- 
sociated with the use of the word intelligence in popular parlance. 

The practical predictive validity of psychometric tests is mainly dependent 
on their g loading. Many different tests have substantial and practically 
useful predictive validity for performance in school, college, in the armed 
services training programs, and in hundreds of different occupations in 
business, industry, and the civil service. My examination of the correlational 
evidence for the validity of tests in these settings leads me to the conclusion 
that virtually all test validity would be drastically reduced, usually to a 
level of practical uselessness, if the g factor were partialed out of the 
reported validity coefficients in all categories of test use (Jensen, 1980, 
chap. 8; Jensen, 1984). The validity of the single G-score of the General 
Aptitude Test Battery (GATB), for example, when averaged over 537 
studies of 446 different occupations, is higher than the multifactor validity 
coefficient based on the multiple correlation between all nine of the 
GATB aptitudes and the job performance criteria, with the general factor 
partialed out (+ .27 vs + .24). (Also recall that multiple correlations are 
always biased upward, whereas zero-order correlations are not.) Although 
g has predictive validity for performance in practically all jobs, a clerical 
speed and accuracy factor and a spatial visualization factor also add a 
significant increment to the predictive validity of the GATB for certain 
clerical and skilled blue-collar occupations. The average predictive validity 
coefficients of each of the nine GATB aptitude tests, in 300 different 
occupations, are correlated + .65 with the g loadings of these aptitude 
tests. The predictive validity of g generally increases with job complexity 
and is highest in those occupations involving the least automatization of 
performance demands and the greatest amount of specialized training, 
constant new learning, judgment, novel problem solving, and responsibility. 

The g loadings of various psychometric tests are highly consistent 
across different racial populations when they share the same language 
and general cultural background. In 10 independent studies in which 
test batteries comprising anywhere from 6 to 25 different tests were 
administered to large representative samples of black and white Americans, 
and a g factor was extracted separately from the correlation matrices in 
the black and white samples, the coefficients of congruence between the 
g factors obtained in the black and white samples of the 10 studies ranged 
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between +.993 and + .999, with a mean of + .996. Such congruence 
coefficients indicate virtual identity of the g factor in the black and white 
populations (Jensen, 1985; Naglieri & Jensen, in press). 

Even the g loadings of the WISC subtests obtained in the population 
of Japan on the Japanese version of the WISC are highly similar to the 
subtests’ g loadings in the American standardization sample for the WISC, 
showing congruence coefficients above + .97 (Jensen, 1983). 

SOME COMMON MISUNDERSTANDINGS ABOUT HIGHLY 
g-LOADED TESTS 

Total scores on tests labeled intelligence tests, IQ tests, general ability 
tests, cognitive abilities tests, general aptitude tests, scholastic aptitude 
tests, and other variants of these terms are all very highly g loaded. This 
class of high-g tests in particular has been subject to considerable popular 
prejudice in recent decades and has accrued a number of common mis- 
conceptions and misunderstandings which have gained currency even 
among some professional psychologists. The acquiescence to some of 
the prejudices and mistaken notions about such tests by many psychologists 
and even by some psychometricians and people in the testing industry 
probably reflects a defensive attitude in the face of the more blatant 
popular prejudices against tests. A defensive attitude about tests too 
often results in overstating the limitations of tests and belittling the 
significance of the individual differences they measure, probably in hopes 
of warding off the antitest prejudice that has prevailed in the popular 
media (Herrnstein, 1982; Snyderman & Rothman, 1986). Listed below 
are some of the more subtle of the various misunderstandings of this 
type that I have encountered rather frequently in the psychological lit- 
erature. Each one is stated here in the form of a question. 

Do intelligence tests measure some innate characteristic of individuals? 
It is often said that tests cannot measure innate, that is, genetically 
conditioned, traits in individuals. If this were true, of course, it would 
be both logically and empirically impossible for any test to show a her- 
itability coefficient significantly greater than zero. The heritability (h*) 
of a metric trait is defined as the proportion of its total variance (a 
measure of individual differences) in a sample of some population that 
is attributable to genetic factors. The total nongenetic variance that is 
not due to measurement error is r,, - h*, where r,, is the reliability of 
the measurements. Innumerable studies have found the heritability of 
highly g-loaded tests to be substantial, with values of h* failing mostly 
in the range from .50 to .80. The correlational data on twins, adopted 
children, as well as many other kinship correlations, in addition to genetic 
phenomena such as inbreeding depression (which is discussed later in 
this paper) cannot be plausibly explained without reference to models 
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of polygenic inheritance. This conclusion is really not in dispute among 
the majority of modern geneticists and specialists in behavioral genetics. 

Analyzing the total variance into components attributable to various 
genetic and nongenetic sources is conceptually no different from the 
analysis of variance attributable to the effects of experimental manipu- 
lations, as is commonly done in experimental psychology, or from the 
analysis of variance into components or factors as in principal components 
and factor analysis, or from the analysis of test scores into true-score 
and error components, as in classical measurement theory. All of these 
components-of-variance models are conceptually the same. And in all 
of them an individual’s score (or any kind of single measurement in the 
analyzed sample) can be expressed as a weighted sum of the various 
components. The simplest quantitative genetic model for an individual’s 
phenotype (i.e., observed characteristic or obtained score) is P = G + 
E, where P, G, and E are deviations from their respective populations 
means; the letters stand for phenotypic (P), genotypic (G), and environ- 
mental (E) or other nongenetic values. (More complex partition of the 
G variance and the E variance [and their covariance] into various com- 
ponents [such as additive, dominance, and epistatic gene effects, genetic 
variance due to assortative mating, and common and specific environmental 
effects], as well as their interactions is possible.) It necessarily follows 
that if the heritability is significantly different from zero, the phenotypic 
measurements (scores) must to some degree reflect individual differences 
in genotypes. Given the individual’s P (i.e., observed score deviation 
from the population mean), the individual’s estimated genotypic deviation, 
G, is h2P. The standard error of measurement of genotypes can be 
expressed in a form that is perfectly analogous to the standard error of 
measurement of any score. If the heritability is h*, the standard error of 
measurement of the genotype will be d&?&, where W; is the total 
phenotypic variance. Just as we can probabilistically test the significance 
of the difference between the obtained scores of two individuals, by the 
same logic we could probabilistically test the significance of the difference 
between two individuals’ estimated genotypic values. Although this ar- 
gument is theoretically correct, there is no conceivable practical value 
in such estimated genotypic values for individuals, because estimated 
values are of necessity perfectly correlated with the obtained scores; 
estimated scores are just obtained scores that have been pushed by some 
constant fraction (i.e., 1 - h*) toward the overall mean of the total 
distribution of obtained scores, and consequently still maintain all the 
same essential statistical relationships to one another. So there is no 
useful advantage to estimated genotypic scores, and they would have 
the added disadvantage of the unreliability of h*, which, like any other 
statistic, is subject to sampling error. It would be a quite different matter, 
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of course, if we could measure genotypes directly. If we could, they 
would lt~t be perfectly correlated with the phenotypic values. (The expected 
correlation between genotypic and phenotypic values is the square root 
of the heritability, or h.) But of course we cannot measure genotypes 
for intelligence directly, nor can we do so for any polygenic trait, physical 
or psychological. Hence, to single out only mental ability tests in this 
respect is to be grossly misleading. The important theoretical point to 
be made here is that the common notion that individual test scores do 
not reflect genetic factors is simply wrong. It is just as conceptually 
wrong as to say that an individual’s height or weight or skin color does 
not reflect genetic factors, although these and certain other physical traits 
may have considerably higher heritability than most measurable psy- 
chological traits. 

Are observed mean differences between populations in test scores 
phenotypic or genotypic? It is often stated that the average differences 
in ability test scores between different populations, such as races and 
social classes, are “only phenotypic” differences. Inclusion of the word 
“only” is what makes the statement completely misleading and thus 
scientifically wrong. By definition, test scores (or any other trait mea- 
surements) are phenotypic, and hence to say that mean differences in 
test scores are “only phenotypic” is quite meaningless, and if it conveys 
to anyone the impression that test scores are different from any other 
trait measurements in this respect, it is simply wrong. A phenotypic 
difference per se affords no basis for inferring the degree to which either 
genetic or environmental factors contribute to the difference. The fact 
that the kinds of analysis required properly to estimate the proportions 
of genetic and nongenetic variance between groups have not been un- 
dertaken only means that we do not know the extent of genetic and 
nongenetic influences on the observed or phenotypic group differences. 
Neither source of influence has been ruled out by any research to date, 
nor, as yet, has there been any scientifically worthy estimation of the 
relative influences of genetic and environmental factors to the variation 
in average test scores between different racial populations. All the various 
lines of relevant evidence available to us today on this question can 
do no more than increase or decrease the subjective plausibility that 
genetic factors are involved in population differences. A recent survey 
of 1020 experts in psychometrics and behavior genetics reported that 
53% believe that genes and environment are both involved in the mean 
black-white IQ difference, compared to 17% who attribute the cause 
only to the environment, with the remaining 30% feeling there is insufficient 
evidence for any conclusions (Snyderman & Rothman, 1986). But all 
beliefs regarding this question, by experts or by anyone else, can at 
present represent no more than subjective statements of plausibility. As 
scientists we should find no satisfaction in this fact. 
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Are the average differences in g-loaded tests that are associated with 
socioeconomic status and occupational categories entirely attributable 
to differences in amount of schooling and in the types of knowledge 
sampled by the tests? That something besides schooling and the knowledge 
content of tests is involved in the observed average differences between 
SES and occupational groups is indicated by two main lines of evidence. 
Full siblings reared together in the same family, and thus having the 
same SES background, often end up as adults in different occupational 
and SES levels, and these differences are positively correlated with their 
IQ differences in childhood and adolescence; the same is true for differences 
in the occupational status of fathers and sons (Jensen, 1973, chap. 6; 
1980, chap. 8). Also, measurements derived from the electrical potentials 
of the brain (the “average evoked potential”), which have been found 
to be correlated with psychometric g, also show significant mean differences 
between groups differing in occupational level (Schafer & Marcus, 1973). 
Thus, occupational differences are found on g-correlated measures even 
when such measures involve no scholastic or cultural content. Moreover, 
it is not true that occupational level is solely a function of amount of 
education; when amount of education is held constant, a part of the 
positive correlation between IQ and occupational status remains. IQ, or 
rather the g ability it measures, acts as a threshold variable with respect 
to educational attainments, with higher levels of IQ being probabilistically 
a necessary, but not sufficient, condition for passing higher educational 
hurdles. However, there also remains a correlation between individuals’ 
SES of origin (i.e., the SES of their parents) and their adult educational 
and occupational status that is completely independent of g. It has been 
noted that if occupational status were completely dependent on g ability 
and not at all dependent on adult individuals’ SES of origin, the present 
advantage of white middle-class children over working class children 
would be reduced by one-third, and the relationship between adult oc: 
cupational status and g ability, or IQ, would be correspondingly increased 
(Humphreys, 1984, p. 240). 

Is intelligence, or g, the same as general learning ability? The answer 
here depends on the sense in which the term learning is used. Learning 
has one general operational meaning under which are subsumed two 
importantly distinct meanings. 

Learning, in the most general sense, may be defined operationally as 
any change in the probability of making a particular response to a particular 
stimulus, when the change in response probability is not attributable to 
fatigue, maturation, senility, sensorimotor impairment, brain damage, or 
drug effects. The two distinct meanings of “learning” may be described 
as (1) comprehension (i.e., grasping concepts, “getting the idea,” “catching 
on”) and (2) improvement with practice. 

When people speak of school learning, they are referring mainly to 
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learning in the sense of comprehension. Striking individual differences 
are observed in children’s rates of advancement in acquiring new and 
progressively complex concepts. No sooner has a child in school “caught 
on” to one idea than he or she is confronted by a new one, which is 
probably at a higher level of complexity. The traditional “3 Rs” are 
essentially of this nature. Learning in this sense, as the acquisition of 
concepts and comprehension of new and progressively complex material, 
is factor analytically indistinguishable from general intelligence, or g. 
Highly g-loaded tests are good predictors of learning in this sense. This 
is true even when the g-loaded tests have no information content in 
common with the criterion measures of learning. The correlation is not 
a result of common elements in the two measures, themselves, but is a 
result of the fact that the two measures depend on the same brain processes. 
Hence, IQ tests, or any highly g-loaded tests under whatever label, are 
highly correlated with scholastic performance and with conceptual com- 
prehension in any setting at any age. 

Improvement in performance with practice is quite another story. In 
this case, either the necessary concepts have already been grasped or 
the material is so simple as to present no problem in terms of compre- 
hension. Practice merely increases facility of performance or adds to the 
acquisition of highly similar information at the same level of conceptual 
complexity. What is commonly referred to as rote learning is largely of 
this nature. One can memorize a string of nonsense syllables or the 
multiplication tables by repetition, and speed and accuracy of recall will 
increase with practice. Learning in this sense, as improvement with 
practice, has relatively little correlation with g. Moreover, no one has 
yet been able to discover any general factor of learning ability in this 
category of learning. What little general factor there is among various 
measures of learning that represent merely improvement with practice 
is the same factor as psychometric g. But most of the variance in rate 
of improvement in performance with practice is quite narrowly task 
specific and does not reflect a general learning ability. Apparently there 
is no general learning ability independent of psychometric g. Even when 
original acquisition entails a good deal of conceptual comprehension, and 
hence is highly correlated with g, repeated practice tends to gradually 
automatize what has been learned. Automatization of learning conserves 
g, so to speak, and frees it for other, more novel, purposes. For example, 
learning to read music, for the beginning student, demands full attention, 
and rate of progress is quite g correlated. For an accomplished musician, 
however, reading music has become almost completely automatized. The 
musical score is seemingly transmitted automatically and directly to ex- 
ecution of the notes on the performer’s instrument, and the performer 
can focus all his attention on intrinsic aspects of musical interpretation 
and expression. As I am writing this, the act of forming letters with my 
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pen is completely automatic, yet when I was in the first grade in school, 
simple penmanship very likely demanded my total concentration. When 
measures of individual differences in automatized performance of any 
kind are factor analyzed along with a variety of psychometric tests, it 
is found that the automatized skills have relatively low g loadings, in 
quite marked contrast to their substantial correlation with g during the 
early stages of acquisition. This type of phenomenon has recently been 
interpreted within the framework of information-processing theory in 
terms of automatic and controlled processing and attention (Ackerman, 
1986, in press; Shiffrin & Schneider, 1977). 

Is g essentialfor the achievement of worldly “success”? It is a popular 
belief that while g, or “IQ,” may be importantly related to scholastic 
performance, it has little importance in the actual race of life once people 
are out of school. Family influence, “connections,” motivation, personality, 
character, and sheer luck are thought to outweigh intelligence as determiners 
of worldly success. All these factors undoubtedly play some part in what 
people generally mean by “success.” Where does g come in? 

If by “success” we mean attained occupational status and all its so- 
cioeconomic correlates, there is ample evidence that g is quite highly 
related to this complex of variables. The IQs of school age children are 
substantially correlated with their adult occupational level. Occupations, 
like tests, differ in their g demands, and persons who score low in g, 
relative to the population, have a low probability of succeeding in those 
occupations with high g demands relative to other occupations. This is 
due, in part, to the differing amounts of g-demanding educational re- 
quirements of various occupations and in part to the differing g demands 
of the occupations themselves. The ability represented by g acts as a 
probabilistic threshold for successful performance, a threshold that differs 
markedly for various occupations. That is, exceeding a certain threshold 
of ability is a necessary but not sufficient condition for succeeding in a 
given pursuit. The correlation between g and occupational level is between 
about + .50 and + .70. It is not higher than this for three main reasons: 
(1) Other traits, interests, and special talents independent of g are also 
correlated with occupational level and with degree of success within 
various occupations; (2) part of the variance in occupations is attributable 
to differences in background, opportunity, and unknown or chance factors 
that are independent of personal characteristics; and (3) most occupations 
accommodate various activities having a fairly wide range of g demands, 
but not so wide as to be within the capability of the whole population. 
It is a fact that the standard deviation of IQs in various occupations 
progressively shrinks as we move up the occupational scale and a decreasing 
proportion of the population can meet the g demands of the successively 
higher level occupations. Exceedingly few persons below the 75th percentile 
in g ever become physicians, for example, and even fewer become math- 
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ematicians and scientists. Although g cannot account for all of the variance 
in occupational level, it accounts for more than any other measurable 
sources of variance, independent of g, that we have been able to discover. 

THE FACTOR ANALYTIC ARGUMENT FOR g 

In subjecting a number of variables to factor analysis, there is no 
mathematically compelling reason for a solution which extracts a general 
factor. Once the number n of significant primary factors has been de- 
termined, the total common factor variance is also determined, and through 
rotation of the factor axes this variance may be allocated to n factors 
in an unlimited number of ways. The original correlations among all the 
variables, insofar as they reflect the n common factors, can be mathe- 
matically reconstituted identically by the n factors regardless of how the 
factors have been rotated. Their positions after rotation, and the pattern 
of factor loadings on the original variables, of course, determine the 
interpretation of the factors. The interpretations will differ as the factor 
axes are rotated into different positions. The positions of the factor axes 
can be likened to the lines of latitude and longitude on a globe or a map. 
It is quite arbitrary that the longitude lines on this grid are all made to 
pass through the north and south poles and the latitude lines are all made 
to be parallel to the equator. A grid with any other reference axes could 
serve equally well to specify the exact location of any point on the face 
of the earth. Locations specified in terms of one set of reference axes 
can be mathematically transformed to any other set of reference axes. 
The same thing is true in factor analysis, and mathematically any given 
set of factors that accounts for the common factor variance among all 
the variables is as good as any other set of factors that accounts for the 
same variance. 

How, then, can one argue that certain factor structures may be sci- 
entifically preferable to other structures? The two main pillars of the 
argument are (1) simplicity (referred to by Thurstone, 1947, as the criterion 
of simple structure) and (2) the directness of relationship of factor structure 
to natural phenomena that are completely independent of the methodology 
of factor analysis. 

Rotation of the primary (or first-order) factor axes to a position that 
approximates Thurstone’s criterion of simple structure as closely as possible 
makes sense in terms of the clarity of description of the factors in terms 
of the various homogeneous tests that were entered into the analysis. If 
several verbal tests and several spatial tests are factor analyzed together, 
for example, and we are able to extract two significant factors, it makes 
good sense to rotate the factors in such a way that one factor has very 
large loadings on all the verbal tests and very small or zero loadings on 
all the spatial tests while the loadings of the tests on the other factor 
are just the opposite. We could then unequivocally label one factor verbal 
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ability and the other spatial ability. Any other position of the factor axes 
would blur this picture; each factor then might show moderate loadings 
on both types of tests, rendering factor interpretation difficult or impossible 
in terms of our knowledge of the tests themselves. It is on such grounds 
that simple structure is the generally preferred criterion for the rotation 
of factor axes. 

Orthogonal rotation means that all the factor axes are maintained at 
right angles to one another and the factors are therefore uncorrelated. 
But there is one thing about factor rotation that is not arbitrary but is 
simply imposed on the results by a fact of nature. It is the fact that in 
the domain of tests of human mental abilities, no matter how homogeneous 
the tests may be, it is impossible to achieve as good a fit to the criterion 
of simple structure with orthogonal (i.e., uncorrelated) factors as with 
oblique (i.e., correlated) factors. With a variety of highly homogeneous 
tests (i.e., tests with a single type of item) a very close approximation 
to perfect simple structure can be achieved by oblique rotation of the 
factors. But this means that the oblique factors themselves are correlated 
with one another, and their common variance can be partialed out and 
represented as a second-order factor. The residualized first-order factors 
are then orthogonalized, because their common variance is moved up 
into the second-order factor. If there is more than one second-order 
factor, the process is repeated, with extraction of a third-order factor. 
The single highest factor in this hierarchical structure is g. In the domain 
of ability tests, the emergence of the g factor is the inevitable consequence 
of following the criterion of simple structure to its logical conclusion. 
At the level of factor analysis, the rejection of g necessarily implies the 
rejection of simple structure. This is why orthogonal factor rotation, as 
is obtained by Kaiser’s (1958) popular varimax program, is simply wrong 
in the abilities domain-orthogonal factors never approximate simple 
structure as closely as oblique factors. If we accept the logic of simple 
structure, we must extract oblique factors, and the correlated factors 
must then be factor analyzed. Thus, a hierarchical factor structure, with 
g at the apex (as shown in Fig. l), is the necessary consequence of the 
simple structure criterion. At the level of factor analysis, any argument 
against g will have to begin with an argument against simple structure. 
So far, no compelling objection to simple structure has been made. 

Within the framework of factor analysis, the extraction of a g factor 
has the virtue of being consistent with the observed fact of nature that 
all tests of ability show positive correlations with one another (i.e., 
positive manifold) and it can therefore be assumed that they all measure 
some one factor in common, whatever the ultimate nature of this factor 
may be. Any method of factor analysis which does not permit extraction 
of the g factor merely obscures this important natural phenomenon of 
positive manifold. An inevitable and empirically demonstrable consequence 
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of positive manifold is the fact that, on average, overall ability differences 
between individuals in the population are greater than the differences 
among various abilities within individuals. 

It still remains to be demonstrated, however, that the factors resulting 
from a hierarchical simple structure represent anything more than just 
the mathematical machinations of factor analysis as applied to ability 
tests. It is fairly easy to see the inferred abilities in the loadings of 
various tests on the primary factors, which can usually be described in 
terms of the nature of the particular tests with the highest loadings on 
each factor. The g factor, however, cannot be described in terms of 
particular tests. It is a much higher level of abstraction than the primary 
factors and therefore seems more remote from observable “reality.” So 
the question naturally arises, does g, more than other factors, correspond 
to any real phenomena outside the realm of factor analysis? If it does 
not, then it may perhaps be justifiably viewed as merely an artifact of 
the factor analytic method. 

We may seek the answer to this question by looking for correlates of 
psychometric g that lie outside both psychometrics and factor analysis. 
If significant and substantial correlations are found, and if the correlations 
are larger than the corresponding correlations with factors other than g, 
I believe we are justified in claiming that g is not merely a methodological 
artifact but represents a real aspect of nature. We can be accused of 
reijjCng g only if we fail to find that g corresponds to some reality outside 
the realm of psychometrics and factor analysis and still claim a reality 
for g. On the other hand, if g is found to be related to natural phenomena 
that are observed or measured independently of the means of deriving 
g, then g cannot be a reification of a methodological artifact but must 
be viewed as a natural phenomenon in its own right. 

NONPSYCHOMETRIC CORRELATES OF g 

The g loadings of various tests are directly related to the heritability 
of the tests. Heritability, h*, is the proportion of variance in a trait that 
is attributable to genetic factors. A widely used method for estimating 
the heritability of trait measurements is based on a comparison of identical, 
or monozygotic (MZ), twins, who have all of their genetic inheritance 
in common, with fraternal, or dizygotic (DZ), twins, who have approx- 
imately only half of their genetic inheritance in common. In hereditary 
traits, MZ twins are, on average, more alike than DZ twins. In such a 
case, the within-pair variance for DZ twins (s’,,,) will be greater than 
within-pair variance for MZ twins (s’,,,). The variance ratio F = 
s’,,,/s&~~ hence indicates the degree of genetic inheritance. (This F ratio 
is automatically corrected for attenuation, since the same error variance 
in the numerator and denominator cancels out.) A statistically significant 
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F ratio warrants rejection of the null hypothesis, i.e., that the heritability 
of the trait is zero. 

These F ratios, based on sets of MZ and DZ twins, have been determined 
for 11 subtests of the Wechsler Adult Intelligence Scale (WAIS) in two 
independent studies (Block, 1968; Tambs, Sundet, & Magnus, 1984). The 
F ratios in the two studies range from 1.36 to 4.51, with a mean of 2.26; 
18 of the 22 Fs are significant beyond the .05 level. 

When the 11 WAIS subtests are ranked in the order of their F ratios, 
and the subtests are also ranked in the order of their g loadings (based 
on the WAIS national standardization data), the rank order correlations 
between F ratios and g loadings are + .62 (p < -05) for the Block data 
and + 55 (p < .05) for the Tambs et al. data. Thus there is a relationship 
between size of the g loadings of WAIS subtests and the degree to which 
the subtests reflect genetic variance, and the heritability of the g variance 
is greater than the heritability of the non-g variance in the WAIS. 

Tests’ g loadings are related to the correlations of the tests between 
family members. Correlations between members of the same family reflect 
both their genetic relatedness and the effects of their sharing a common 
environment. Neither of these effects has any connection with either 
psychometrics or factor analysis. Yet the g factor loadings of 15 highly 
diverse cognitive tests have been found to be correlated with family 
correlations on these tests in a large sample (927 families) of white 
Americans (Nagoshi & Johnson, 1986). When the pattern of g loadings 
of the 15 tests is correlated with the pattern of familial correlations (all 
disattenuated) on the 15 tests, the following correlations are obtained: 

Between spouses 
Mother-daughter 
Mother-son 
Father-daughter 
Father-son 
Sister-sister 
Brother-brother 
Brother-sister 

+.90 
+ .76 
+ .69 
+ .59 
+ .55 
+ .42 
+ .33 
+ .26 

The high correlation (+ 90) between the 15-test profile of g loadings and 
the profile of spouse correlations on the 15 tests indicates that assortative 
mating is based largely on g. Hence the effect of assortative mating on 
the genetic variance of abilities in the offspring generation will most 
strongly increase the genetic component of the g variance relative to the 
genetic component of other ability factors independent of g. For heritable 
traits, the effect of positive assortative mating (i.e., a positive correlation 
between spouses) is to increase the total genetic variance in the assortatively 
mating population. VirtualIy ail of this effect of assortative mating consists 
of an increase in the genetic variance between families; the genetic variance 
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within families (i.e., variance between full siblings) is scarcely affected 
by assortative mating (Jensen, 1978). 

Tests’ g loadings are related to the degree of inbreeding depression 
oftest scores. Inbreeding depression is the diminution of a heritable trait 
in the offspring of genetically related parents as compared with the offspring 
of genetically unrelated parents. The higher the degree of kinship between 
the parents, the greater is the average degree of inbreeding depression 
in the offspring. However, inbreeding depression is observed only in 
those heritable traits which involve genetic dominance, that is, the phen- 
otypic expression of the trait is enhanced by dominant alleles, while 
recessive alleles have the opposite effect. Traits that are fitness characters 
in the Darwinian sense, and hence have been subjected to natural selection 
in the course of evolution, increasingly develop genetic dominance over 
many generations. When evidence of genetic dominance is found for any 
polygenic trait, it is evidence that the trait has been subjected to directional 
selection in past generations. Inbreeding increases the degree of homo- 
zygosity (i.e., the proportion of paired alleles that are alike [dominant- 
dominant and recessive-recessive] relative to unlike pairs [dominant- 
recessive]), which diminishes the trait-enhancing potential of the dominant 
genes, resulting in the phenomenon known as inbreeding depression. 

At least 12 independent studies have reported this genetically predictable 
effect of inbreeding on mental test scores (reviewed by Jensen, 1983; 
Agrawal, Sinha, & Jensen, 1984), and no studies have reported contrary 
findings. The effect of inbreeding depression on the IQs of children of 
first cousins, as compared with children of unrelated parents, is about 
one-third of a standard deviation (i.e., 5 IQ points) for Wechsler IQ and 
about one-half of a standard deviation on the Ravens Matrices, a more 
purely g-loaded test than the Wechsler (Agrawal et al., 1984). 

As I have shown in detail elsewhere (Jensen, 1983) the degree of 
inbreeding depression on the various subtests of the Wechsler Intelligence 
Scale for Children (WISC) is directly related to the subtests’ g loadings. 
The rank-order correlation between 11 WISC subtests’ g loadings and 
their index of inbreeding depression (i.e., the difference between inbred 
and noninbred children) is about + .80. Varimax-rotated factor loadings 
show markedly smaller correlations with the index of inbreeding depression 
than do the g-factor loadings. These results indicate that psychometric 
g reflects a biological aspect of mental ability that acts as a fitness 
character which has been subjected to natural selection in the course of 
human evolution. 

The degree to which various tests display the effect of hybrid vigor 
resulting from outbreeding is related to the tests’ g loadings. Hybrid 
vigor, or heterosis, is just the opposite of inbreeding depression. Heterosis 
is an enhancement of the dominant trait. It results from outbreeding, 
that is, mating between individuals who are less closely related genetically, 
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in terms of common ancestry, than the average degree of genetic similarity 
between mates in the general population. Heterosis, however, is less 
pronounced and therefore harder to measure, because, in human pop- 
ulations, the average degree of inbreeding is so small that deviations 
from the average in the direction of outbreeding cannot be very great. 
Hence the effects of inbreeding and of outbreeding cannot be symmetrically 
distributed around the extremely low average coefficient of inbreeding 
in the general population. Thus more extreme degrees of inbreeding are 
possible than of outbreeding, and consequently inbreeding depression 
can be a larger effect in terms of deviation from the population mean 
than heterosis can be. 

Stimulated by my (Jensen, 1983) observation that the g loadings of 
various tests are directly related to the degree to which scores on the 
tests displayed inbreeding depression, Nagoshi and Johnson (1986) took 
the next logical step and tested the corollary hypothesis, namely, that 
tests’ g loadings would also be related to the degree to which the scores 
on various tests displayed heterosis, or the genetically predictable effect 
of outbreeding. They looked at a large sample of children in Hawaii who 
were the offspring of matings between Americans of European descent 
and Americans of Japanese descent. This was the outbred group. The 
control groups were the offspring of parents who were both either European 
or Japanese Americans in Hawaii. The parent groups were matched on 
background factors known to be related to psychometric intelligence, 
such as education and socioeconomic status. Degree of heterosis was 
measured by the difference, in standardized scores, between the mean 
of the outbred and the mean of the two control groups on each of 15 
highly varied cognitive tests. The 15 tests were also factor analyzed 
within each group to determine the tests’ g loadings. The correlation 
between the 15 tests’ g loadings and the measures of heterosis was + .44, 
in accord with the theoretical prediction. When g factor scores were 
computed for all subjects, it was found that the outbred group scored, 
on average, about one-fourth of a standard deviation higher than the 
mean of the two control groups. (The inbred offspring of first cousins, 
in contrast, would fall about one-third to one-half of a standard deviation 
below noninbred controls on g factor scores.) 

Evoked electrical potentials of the brain are related to g. Certain 
features of the electrical potentials of the cerebral cortex evoked by a 
simple visual or auditory stimulus are correlated with IQ (for reviews, 
see Eysenck & Barrett, 1985; Haier, Robinson, Braden, & Williams, 
1983). The subject, with an electrode attached to his scalp, merely sits 
in a reclining chair and simply hears a randomly spaced series of auditory 
“clicks,” stimuli that cannot be regarded as “cognitive” or “intellectual” 
by any reasonable definition. The subject is not required to make any 
overt or voluntary responses during the session. But brain waves are 
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recorded and averaged by computer over a given time-locked epoch 
marked by the occurrence of each auditory stimulus, yielding a highly 
distinctive waveform termed the average evoked potential, or AEP. The 
main features of interest are the average latency, intraindividual variability 
in latency, amplitude, and complexity of the AEP. (The average total 
excursion of the line marking the waveform of the evoked potential within 
a uniform epoch provides an objective measure of the complexity of an 
individual’s AEP.) All of these measures have been found to be correlated 
with scores on various IQ tests. 

The most interesting finding from our standpoint, however, is that the 
AEP is more closely related to g than to any other source of psychometric 
variance. Hence the g derived from the factor analysis of conventional 
psychometric tests is clearly related to an electrophysiological measure 
of brain activity. 

Eysenck and Barrett (1985) measured both the complexity and intra- 
individual variance of the AEP waveform in 219 subjects and combined 
these features in a composite measure which they correlated with the 
WAIS Full Scale IQ in 219 subjects. Greater complexity and lesser 
variability are associated with higher IQ. Correlations were obtained 
between this AEP-derived measure and each of the 11 subtests of the 
WAIS. These correlations differed across the various subtests, and they 
also differed after correction for attenuation. Some subtests were clearly 
more highly correlated with the AEP than were others. But here is the 
interesting point: The rank-order correlation between the sizes of the 
subtests’ correlations with the AEP and the sizes of the subtests’ g 
loadings was + .93. In short, the various subtests are correlated with 
the AEP to the degree that they are loaded on g. When the AEP measure 
was factor analyzed among the WAIS subtests, it had a loading of + .77 
on the g factor. 

A similar study of the evoked potential was performed independently 
by Schafer (1985) in a sample of 52 adults of average to superior intelligence 
(WAIS Full Scale IQs of 98 to 142). But Schafer used a different measure, 
based on the observation that the amplitude of the evoked potential (EP) 
decreases with repeated trials. Schafer subtracted the average EP amplitude 
of the second block of 25 trials (25 auditory “clicks”) from the average 
amplitude of the first block of 25 trials. This index of EP habituation, 
as Schafer termed it, was found to be correlated + .59 (I, < .Ol) with 
the WAIS Full Scale IQ. (When corrected for the restricted range of IQ 
in this sample, the correlation rises to + .73.) Schafer also obtained 
correlations between the EP habituation index and each of the 11 subtests 
of the WAIS. Figure 2 shows these correlations plotted as a function of 
the subtests’ g loadings (first principal factor). The Pearson correlation 
(r) is + .80 and the rank-order correlation (p) is + .77 between the subtests’ 
g loadings and the size of their correlation with the EP habituation index. 
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FIG. 2. Correlation of the habituation index of the evoked potential (EP) with Wechsler 
Adult Intelligence Scale (WAIS) subtests plotted as a function of the subtests’ g loadings 
(i.e., first principal factor) in Schafer’s study. WAIS subtests: I, Information; C, Com- 
prehension; A, Arithmetic; S, Similarities; D, Digit Span; V, Vocabulary; Cod, Coding; 
PC, Picture Completion; BD, Block Design; PA, Picture Arrangement; OA, Object Assembly. 

Moreover, Schafer found that no other factors, independent of g, that 
he could extract from the WAIS battery had any significant or appreciable 
correlation with the EP habituation index. The EP index reflects only 
the g factor. 

The size of the mean black-white difference on various tests is directly 
related to the tests’ g loadings. Sixty years ago, Spearman (1927) com- 
mented on his observation that the size of the mean black-white differences 
on a battery of 10 tests were “most marked in just those [tests] which 
are known to be most saturated with g” (p. 379). If Spearman’s observation 
was confirmed with other test batteries in other samples of the black 
and white populations, it would constitute another example of the as- 
sociation of g with a variable outside the realm of factor analysis. Note 
that the g loadings of tests may be determined completely independently 
of the average black-white difference on the tests, so there can be no 
artifactual cause for a correlation between tests’ g loadings and the 
magnitude of the black-white differences on the tests. 

I have checked Spearman’s original observation in 12 independent 
studies of large, representative samples of American blacks and whites 
that were administered anywhere from 6 to 25 diverse tests of cognitive 
abilities (Jensen, 1985; Naglieri & Jensen, in press). Spearman’s observation 
is borne out in every study, and no study has been found which contradicts 
this finding. It indeed appears that the well-known average black-white 
difference on psychometric tests is much more a difference in g than in 
any other factor. In the largest and most representative samples the 
correlation between the mean black-white differences on various tests 
and the tests’ g loadings is about + .80. This fact naturally has certain 
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important and inescapable implications when tests are used for selection 
in education and employment, since the predictive validity of tests is 
largely attributable to their g loading. How the resulting “adverse impact” 
of testing on blacks should be dealt with is, of course, not a scientific 
question but a matter of public policy, on which opinions differ. 

g is related to differences in reaction time in response to elementary 
cognitive tasks. Many studies in recent years have shown correlations 
between conventional highly g-loaded psychometric tests and reaction- 
time (RT) measures derived from a variety of elementary cognitive tasks. 
This literature is much too extensive to review in any detail here, so I 
will abstract a few of the general findings that are most germane to the 
present thesis. (For more general reviews, see Carroll, 1980; Eysenck, 
1982; Vernon, in press). 

An elementary cognitive task has been defined by Carroll (1980) as 
follows: 

An efemeniary cognitive task (ECT) is any one of a possibly very large set of 
tasks in which a person undertakes, or is assigned, a performance for which there 
is a specifiable class of “successful” or “correct” outcomes or end states which 
are to be attained through a relatively small number of mental processes or 
operations, and whose successful outcomes can differ depending upon the instructions 
given to, or the sets or plans adopted by, the person. 

In general, ECTs are so simple that individual differences cannot be 
reliably measured in terms of number of right or wrong responses, as in 
ordinary psychometric tests, but must be measured in terms of response 
latency or reaction time (RT). ECTs usually involve little or nothing that 
could be called “intellectual” content or items of knowledge or skill that 
would not be possessed by any of the persons taking part in a study of 
an ECT. In my own studies of ECTs, for example, subjects, in order to 
qualify for participation, must demonstrate perfect scores on all of the 
information content of the ECT when the task is administered without 
time limit. 

ECTs include simple and choice RT to simple visual or auditory stimuli 
(e.g., the onset of a light or a tone), visual scanning of a short series of 
digits for the presence or absence of a predetermined target digit, scanning 
of easily memorized series of 1 to 7 digits for the presence or absence 
of a designated probe digit, simple comparisons of letters or words as 
to whether they are the same or different with respect to physical, gra- 
phemic, or semantic characteristics. The extreme easiness of the ECTs 
used in my own research is shown by the fact that the median RT for 
Berkeley undergraduates on the most difficult tasks is less than 1 s and 
the response error rates are very low, averaging less than 5% of all 
responses. 

Yet RTs derived from these very simple ECTs show significant and, 



g: ARTIFACT OR REALITY? 327 

in some cases, quite substantial correlations with scores on unspeeded 
psychometric tests. Even in the restricted range of ability in the college 
population, the correlations range between about - .10 (for simple RT) 
to about - SO (for discrimination RT). The intertrial variability in RT 
(measured as the standard deviation of the subject’s RTs over a given 
number of trials) is generally even more highly correlated (negatively) 
with psychometric test scores than is the average RT. The highest cor- 
relation found in our university sample so far is between an “oddman 
out” RT test and scores on the Advanced Ravens Progressive Matrices 
test given without time limit. The Ravens is a high-level test of nonverbal 
reasoning. In a sample of 71 students, the multiple correlation, based 
on median RT, median MT (movement time), and the SDS of RT and 
MT over 132 trials, was .60. This seems a remarkable correlation con- 
sidering the simple nature of the “oddman” task. In a row of eight 
equidistant lights, a set of three lights goes on; one light (the “oddman”) 
is always farther in distance from the other two lights. The subject’s 
task is to turn off all three lights as quickly as he can simply by touching 
the “oddman” light. The subject first holds his finger on a central “home” 
button, then the three lights come on simultaneously, and the subject 
responds. RT is the time interval between stimulus onset and lifting the 
finger from the “home” button. Movement time (MT) is the interval 
between releasing the “home” button and touching the “oddman” button. 
The mean RT is only 460 ms; mean MT is 294 ms, and the response 
error rate is 2?G&obviously a very simple task, not involving any knowledge 
or acquired skill, and too fast to allow what one would ordinarily think 
of as “cogitation.” Yet it correlates .60 with scores on an unspeeded, 
difficult test of complex reasoning which is known to be one of the most 
highly g loaded of all psychometric tests. In another study, the “oddman” 
test showed a correlation of .62 with the WAIS Full Scale IQ (Eysenck 
& Frearson, in press). 

Several generalizations concerning the relationship of RT in ECTs to 
psychometric g can be gleaned from this literature. 

Probably the most important generalization has to do with task com- 
plexity. The best objective index of the complexity of an ECT is the 
average RT. For RTs up to as long as about 2 s, there is an increasing 
correlation between RT and g. In the one most direct study (Vernon & 
Jensen, 1984) of this phenomenon, the correlations of RT on each of 
eight tasks with g factor scores on the Armed Services Vocational Aptitude 
Battery were correlated - .98 with the complexity of the tasks (as indexed 
by the mean RT on each task). Also, groups that differ, on average, in 
g, such as retarded and normal vocational students and university students, 
gifted and average children, and blacks and whites, show average dif- 
ferences in RT, and the differences markedly increase as a function of 
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ECT complexity, even though all of the tasks are very simple for all 
subjects, with the longest average RTs of less than 2 s (Cohn, Carlson, 
& Jensen, 1985; Jensen, 1982, 1985; Vernon & Jensen, 1984). It is also 
possible to manipulate the g loadings of ECTs experimentally by creating 
“dual” or competing tasks, thereby increasing the demands on the in- 
dividual’s information-processing capacity (Fogarty & Stankov, 1982; 
Jensen, in press-a; Vernon, 1983). 

Hemmelgam and Kehle (1984) used the Hick RT paradigm (Jensen, 
in press-b), in which the subject’s RT to either 1, 2, 4, or 8 light-button 
alternatives is measured. In this paradigm, RT increases as a linear 
function of the binary logarithm of the number of alternatives, a phe- 
nomenon known as Hick’s law. The slope of this linear increase in RT 
may be viewed as a measure of the rate of information processing. This 
slope measure was correlated with scores on each of the 12 subtests of 
the Wechsler Intelligence Scale for Children-Revised (WISC-R) in a 
group of 59 elementary school pupils, with age partialed out of the 
correlations. The pattern of these 12 correlations had a rank-order cor- 
relation of - .83 (p < .Ol) with the pattern of the 12 subtests’ g loadings. 
That is, the degree to which a WISC-R subtest is correlated with rate 
of information processing is highly related to the size of the subtest’s g 
loading. 

Vernon (1983) found a similar effect in a group of 100 university students 
who were given the WAIS and a battery of eight RT tasks. The multiple 
correlation was obtained between the eight RT tasks and each of the 
WAIS subtests. The pattern of these multiple correlations showed a 
correlation of .73 with the pattern of the subtests’ g loadings. But the 
more important finding in Vernon’s (1983) study was that just the g factor 
of the WAIS was correlated .41 with a composite score of all the RT 
tasks. The 11 subtests, with their g partialed out, showed a nonsignificant 
multiple R with the RT composite. In other words, virtually all of the 
correlation between the WAIS and the RT measures was attributable to 
the g factor of the WAIS. 

The Wechsler tests were not devised with reference to factor analysis 
or g theory, and certainly they were never devised to produce a strong 
association between the subtests’ g loadings and their degree of correlation 
with RT measures derived from ECTs. 

As mentioned previously, the RT measures of various ECTs are them- 
selves differentially correlated with g along some dimension of cognitive 
complexity of the ECTs. It may, therefore, seem rather dismaying to 
those of us who are over age 50 that speed of processing slowly declines 
beyond middle age, and the decline is greatest on the very same ECTs 
that are the most highly correlated with g (Ananda, 1985; Cerella, 1985; 
Cerella, Di Cara, Williams, & Bowles, 1986). 
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THEORIES OFg 

All of the findings about g that I have reviewed in this paper, I believe, 
warrant a view of g as one of the major and fundamental variables in 
psychology, and a variable which unquestionably links psychology to 
biology and evolution. The nature of g itself, which is the basis of 
individual differences in what Lloyd Humphreys (1981) has aptly referred 
to as “the primary mental ability,” is quite another story, which I have 
reviewed in considerable detail elsewhere (Jensen, in press-a). Suffice it 
to say here that at present there is no generally agreed-upon theory of 
the nature of g that goes much beyond the kinds of facts I have reviewed. 
The final explanation of g will depend upon future advances in our 
understanding of the physiology and biochemistry of the brain itself. The 
well-established and very substantial heritability of g measures leaves 
no doubt of the biological underpinning of individual differences in g, 
and it is in the province of the neurosciences that the nature of g will 
finally be understood. Without this direct approach, neurological theories 
of g will remain merely speculative. Cognitive psychology runs into great 
difficulty in providing an explanation of g, because the most elemental 
measurable components of cognitive processes are themselves correlated 
with one another, and the general factor extracted from these intercorrelated 
cognitive processes seems to be the same factor that we recognize as 
psychometric g. If so, we are virtually forced in the reductionist direction 
of seeking to understand this fundamental phenomenon at the level of 
brain physiology. 

For the time being, what I think we can rather confidently say about 
g, in light of present evidence, is that g reflects some property or processes 
of the human brain that are manifested in many forms of adaptive behavior, 
and in which people differ, and that increase from birth to maturity, and 
decline in old age, and show physiological as well as behavioral correlates, 
and have a hereditary component, and have been subject to natural 
selection as a fitness character in the course of human evolution, and 
have important educational, occupational, economic, and social correlates 
in all industrialized societies, and have behavior correlates that accord 
with popular and commonsense notions of “intelligence.” 
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