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Charles Spearman’ discovered g almost 90 years ago and it has continued to be 
a major construct of differential psychology. Interest in theory and research on 
g has waxed and waned over the nine decades of its venerable history, but it is 
probably greater today than in any previous period. 

In recent years, researchers have made important strides toward answering 
some of the most crucial questions and controversies regarding the nature of g. 
Our understanding is now well beyond the point where most theorists are 
satisfied with merely psychological explanations of one of psychology’s major 
phenomena. The strictly psychometric aspects of g are now so well established 
empirically and so firmly grounded methodologically as to no longer command 
a further major research commitment at this level. As the current trend of theory 
and research on g advances closer to the interface of brain and behavior, it seems 
a safe prediction that the main line of progress toward our future understanding 
of g will be in the province of biology, particularly the brain sciences, but also 
genetics and evolutionary neurology. 

1. The Concept of Psychometric g 

Various tests of mental ability reflect rather different abilities, as shown by 
the fact that when scores on a number of such tests are obtained from a 
representative sample of the general population, the correlations between peo- 
ple’s scores on the various tests are less than perfect, even when corrected for 
measurement error, or unreliability. Correlations among different mental tests 
generally range from about +.20 to +.80, depending mainly on how much the 
various tests vary in task complexity, diversity of information content, and 
required skills. Although the test intercorrelations are less than perfect, the 
theoretically intriguing point is that they are all positive and, when obtained in 
fairly large and unrestricted samples, are virtually all significantly greater than 
zero. 

This empirical phenomenon, which is now one of the most solidly sub- 
stantiated facts in psychology, can be interpreted to mean that all kinds of mental 
ability tests measure something in common. Spearman called this “something” 
the general factor, which he symbolized as g. Whether called “Spearman’s g,” 
“psychometric g,” or just plain g, this construct refers to the component of 
individual differences variance that is common to all tests of mental ability. In 
addition to discovering the existence of g,  Spearman invented a method by 
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which the coefficient of correlation between a particular test and the g factor 
could be determined. (Such a correlation is termed the test’s g loading.) 

The g factor is the sine qua non of all “IQ’ tests, no matter what other 
sources of variance such tests may measure. The g factor is commonly thought 
of as “general intelligence.” As a short definition of g, however, “general mental 
ability” is preferable to “general intelligence.” For reasons spelled out else- 
 here,^,^ the persistently indefinable and emotive word “intelligence” is best 
avoided in the discussion of human abilities. ‘‘Intelligence’’ has so many dif- 
ferent meanings, especially among psychologists, and carries so much excess 
connotative baggage as to be a hindrance to serious discussion. 

1.1. The Psychometric Nature of g 

Before getting to the main topic, several of the most germane and well- 
established facts about psychometric g, which were obtained strictly from factor 
analyses of a wide variety of conventional tests of mental abilities, should be 
reviewed. “Mental” here only means that a negligible part of the individual 
differences’ variance in performance is attributable to sensory-motor functions, 
while “ability” is defined as an intentional response to some situation that can 
be classified or scaled in terms of an objective criterion of the “goodness” of the 
subject’s performance (e.g., correct or incorrect response, response time). 

1.1.1. In over 80 years of research on human abilities, no cognitive task has 
been consistently found to be not positively correlated with any other cognitive 
tasks, or not show a positive g loading when factor analyzed among a fairly large 
battery of diverse tests of mental abilities, administered to a representative 
sample of the general population. Consequently, the main tenet of Spearman’s 
g theory has never been refuted, since every reliable indicator of mental ability 
has some positive g loading. 

1.1.2. The g factor and other factors derived from factor analysis do not 
represent the operating principles, processes, mechanisms, or structures of the 
mind or the brain. In principle, these properties of the brain could be discovered 
by studying only one individual. Factors, on the other hand, depend entirely on 
individual differences, or variance; on a number of distinct variables; and on all 
the correlations between them. This necessitates studying more than one in- 
dividual. Within a given domain of variables, factor analysis can represent the 
“structure” of individual differences. The term “structure” here refers to the 
representation of a pattern of correlations in terms of a mathematical or geo- 
metric structure, or model, with no direct implications regarding any physical 
or anatomic structures. However, certain results of factor analysis, such as the 
discovery of g, may lead to questions that can be answered only in terms of 
physical structures and processes in the brain. 

1.1.3. A g factor can be extracted from a correlation matrix by several 
different methods. It may surprise many that g obtained as either the first 
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principal component or principal factor is a conceptually inappropriate factor 
model for extracting g. In theory, using principal component or principal factor 
analysis can yield misleading results. For example, a simulated correlation 
matrix that has been expressly devised to exclude a general factor can appear 
to have a very substantial g factor. However, if a matrix actually contains a 
general factor that accounts for a sizable proportion of its total common factor 
variance, both of these methods will yield reasonably accurate estimates of the 
g loadings of the variables in the matrix. Since real ability test matrices nearly 
always do contain a large general factor, the vast majority of past studies using 
principal components and principal factors have not given a misleading picture. 
Furthermore, past results are highly congruent with the g factors extracted by 
means of the logically most appropriate and statistically sophisticated methods 
available, methods which have been tested on simulated variables whose true 
factor structure is known exactly. 

1.1.4. The g factor is remarkably stable across different test batteries, and 
the stability increases as a function of both the number and diversity of tests that 
are entered into the factor analysis. Tests with very high g loadings within one 
particular battery of diverse tests remain highly g-loaded when they are included 
in factor analyses of other diverse batteries. In a study of the stability of g by 
Robert L. Thorndike: for example, there was an average correlation of +.85 
between the g loadings of 17 different “probe” tests when included one at a time 
in the separate factor analyses of 8 distinct batteries, each composed of six 
highly diverse tests. In other words, each of the “probe” tests’ g loadings 
maintained about the same relative position among the g loadings of all of the 
other 16 “probe” tests, regardless of the particular battery of tests in which it was 
factor analyzed. The point is that the g factor (and ips0 facto any particular test‘s 
g loading) does not fluctuate capriciously from one collection of tests to another. 
If a battery of tests is quite diverse in sampling the domain of abilities and is 
fairly large (i.e., ten or more tests), its g factor will be highly stable, that is, 
highly correlated with the g of any other test batteries having these character- 
istics. For example, the six Verbal subtests of the Wechsler Intelligence Scale 
for Children (WISC) look very different from the six Performance subtests, but 
the g extracted from just the Verbal subtests is correlated about .80 with the g 
extracted from just the Performance subtests. 

1.1.5. In a large and highly diverse collection of mental tests, the various 
tests’ g loadings are a perfectly continuous variable, ranging from slightly 
greater than zero to near the ceiling of test reliability. Ability tests do not 
fall into discrete categories with respect to their loadings on g. However, it is 
possible to characterize the types of tests that have high or low g loadings. As 
noted by Spearman, the most highly g-loaded tests involve complex cognitive 
operations, such as “the eduction of relations and correlates,” or inductive and 
deductive reasoning, and “abstraction.” Tests with low g loadings generally 
involve less complex cognitive processes, such as simple sensory discrimina- 
tions, reaction times to simple stimuli, and rote memory. In the WISC, for 
example, the most highly g-loaded subtests are Vocabulary and Block Design; 
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the least g-loaded are Coding and Digit Span. A test’s g loading is seldom 
predictable from any such specific features as its sensory modality or knowl- 
edge content per se, but is much more predictable on the basis of the subjec- 
tively perceived complexity of the mental operations required for passing 
performance. For example, the backward digit span test (i.e., recalling a series 
of digits in reverse order) involves slightly more complex mental operations 
than forward digit span, and backward digit span has almost twice the g 
loading of forward digit span. Both of these relatively simple tests, however, 
have rather low g loadings compared with the more complex subtests of the 
WISC. 

1.1.6. Psychometric g cannot be described in terms of the superficial char- 
acteristics of tests-the specific knowledge, skills, or problem solving strategies 
they may involve. The g factor derives much of its interest and importance from 
the fact that it is not a measure of specific knowledge, skills, or strategies for 
problem solving. Broadly speaking, g reflects individual differences in informa- 
tion processing per se. The knowledge and skills aspect of mental test perfor- 
mance is merely a vehicle for the measurement of g ,  which reflects the overall 
capacity and efficiency of the brain processes by which knowledge and skills are 
acquired and used. Hence we cannot begin to fathom the causal underpinning 
of g by merely examining the psychometric tests themselves. 

Because g emerges from the analysis of correlated individual differences on 
a large number of very diverse tests, the variance attributable to specific char- 
acteristics and task demands of the particular tests are in effect averaged out. 
This is also true for the common characteristics of certain classes of tests, such 
as verbal, numerical, spatial, memory, and the like, whose intercorrelations 
(independent of g )  form group factors. Ideally, the g factor may be thought of 
as a distillate of the common source of individual differences in all of the tests, 
completely stripped of their distinctive features of information content, skill, 
strategy, and the like. In this sense, g can be roughly likened to the Central 
Processing Unit (CPU) of a computer, and like the computer’s CPU, g seems 
to reflect individual differences in the brain’s “hardware” more than in its 
“software.” 

1.1.7. Individual differences in human learning abilities also reflect g-the 
same g derived from psychometric tests. That is, the general factor in a wide 
variety of learning tasks is found to be the same factor as psychometric g .  There 
seems to be no general learning ability factor independent of g ,  but there are 
many group factors and a lot of specificity in the wide variety of learning tasks 
that have been studied. The research on the relationship between learning and 
g has been reviewed el~ewhere.~ 

1.1.8. There is now a vast literature showing that g is the chief “active 
ingredient” in the practical predictive validity of psychometric tests for such 
criteria as educational achievement, occupational level, job performance, and 
success in armed forces training pr0grams.4.~~ What this implies, of course, is 
that many “real life” tasks, especially educational and occupational demands, 
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are g-loaded to varying degrees and tend to discriminate among people on this 
basis. 

2. Correlates of g outside the Psychometric Domain 

One of the most remarkable properties of g, in contrast to other psychometric 
factors independent of g, is that g shows correlations with a host of variables 
whose measurement and conceptual basis are completely separate from psycho- 
metrics and factor analysis."lJ1 This fact alone proves that g is not merely some 
kind of artifact of psychometric tests or the mathematical machinations of factor 
analysis. 

The degree to which various psychometric tests are g loaded is highly related 
to their degree of correlation with such nonpsychometric variables as the her- 
itability of individual differences in test scores, the spouse correlations and 
various genetic kinship correlations in the test scores, and the effects of in- 
breeding (and its counterpart, heterosis) on test scores. The fact that the degree 
of inbreeding depression of scores on various tests (as observed in the offspring 
of cousin matings) is highly related to the size of the tests' g loadings indicates 
that g is a genetically dominant trait, and genetic dominance arises from natural 
selection in the course of evolution.12 The presence of genetic dominance in- 
dicates a fitness character in the Darwinian sense. Thus it appears that g is 
deeply rooted in biology. 

Also, certain features of the electrical activity of the brain, such as the 
latency of the average evoked potential (AEP), are correlated with various 
psychometric tests. The degree of a test's correlation with the AEP is directly 
related to the size of the test's g loading. It is especially noteworthy that no 
other sources of variance in psychometric tests show any correlation with the 
AEP.13 

Many other physical variables (i.e., anatomical, physiological, serological, 
and biochemical) are correlated with g. For most of these correlations, how- 
ever, the chain of causality is so indirect, and so obscure at present, as to be 
of little help in understanding the nature of g. Thus, although very real in a 
statistical sense, these correlations are mysterious and must await future ex- 
planation. Without a doubt, however, they show that some part of the popula- 
tion variance on conventional tests of mental ability reflects certain latent traits, 
primarily g, that are profoundly enmeshed with many organismic variables in 
complex ways. 

2.1. Between-Families and Within-Families Correlations 

In a comprehensive review of the evidence relating to these various physical 
correlates of human intelligen~e,'~ an important distinction is made between two 
main types of correlation between g and physical variables: (1) a correlation that 
is found only between families but not within families, and (2)  a correlation that 
is found within as well as between-families (where "family" means only full 
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siblings). As explained elsewhere,15 this distinction is theoretically crucial in 
limiting the kinds of hypotheses that could explain each type of correlation. 
Although both types of correlation may be equal in size and statistical 
significance, their causal underpinnings are importantly different. The first type 
of correlation (i.e., between families only) rules out genetic pleiotropy, that is, 
two or more distinct phenotypic characteristics whose variance is affected by the 
same gene (or set of genes). The correlation of about +.20 between height and 
g, for example, is only a between-families correlation; there is no correlation 
between height and g among full siblings. The between-families correlation in 
this case seems to have come about as the result of the common assortment of 
genes for height and for g, since both of these variables partly influence mate 
selection in our culture. Other things being equal, high g women tend to marry 
tall men (and vice versa), and since both traits are highly heritable, their 
offspring (on average) tend to be both taller and higher in g than average. On 
the other hand, myopia, which is correlated about +.25 with g, is a within- 
families correlation, suggesting that it is a pleiotropic correlation, in which one 
or more of the genes involved in myopia also have the effect of enhancing g .  
The sibling with higher g is more likely to be myopic.16 So myopia probably has 
some pleiotropic relation to brain functions, but the neurology of the causal 
connection and how it came about in the course of human evolution are com- 
pletely unknown. 

Head size and brain size are correlated with g independently of body size. 
From a meta-analysis of all the published studies, the estimated correlation 
between brain size and IQ (or other highly g loaded indices) is +.30.14 A recent 
study” of 40 healthy college students measured brain size quite accurately in 
vivo by means of magnetic resonance imaging (MRI) and correlated these 
measurements with the students’ Wechsler IQs. From the results, the authors 
inferred a brain size x IQ correlation of +.35 adjusted for body height and 
weight, in the general population (with mean IQ = 100, SD = 15). Neurological 
theories of g, of course, will have to explain the brain-size x g correlation, but 
the explanation will be neurologically informative only if the correlation exists 
within families. This crucial point has not been firmly established, although it 
would be most surprising if the correlation between brain size and IQ were 
found to exist only between but not within families, like the correlation between 
height and IQ. 

Speculative theories of the brain-size x IQ correlation have invoked vari- 
ables such as the number and amount of branching of brain cells, the number 
of synaptic connections, and the number of glial “support” cells, or some 
combination of these. One of the unsolved mysteries is that males and females 
differ in brain size, even after adjustment for the average sex difference in body 
height and weight, despite the failure to find any good psychometric evidence 
for an average sex difference in g. Yet within groups of males and females 
separately, brain size is positively correlated with g .  

2.1.2. Other physical variables that seem to correlate with g, but for which 
the causal connection is either largely unknown or hard to hypothesize, are 
certain blood antigens, serum uric acid level, vital capacity, facial features, basal 
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metabolic rate (in children), asthma and other allergies, presence or absence and 
size of the masa intermedia (which connects the two halves of the thalamus), 
ability to taste the synthetic chemical phenylthiocarbamide (PTC), and tongue- 
curling ability (which is controlled by a single gene). 

2.2. Reaction Time (RT) on Elementary Cognitive Tasks (ECTs) 

This is a class of variables whose relation to g is now well established and 
whose properties are much better suited than those of conventional psycho- 
metric instruments for testing hypotheses concerning the neural basis of in- 
dividual differences. RT has the advantage of being a true ratio scale and does 
not depend on a norm or reference group for its interpretation, as do conven- 
tional psychometric tests. ECTs also permit the measurement of individual 
differences while minimizing variance attributable to specific knowledge and 
acquired intellectual skills and problem-solving strategies. ECTs are devised to 
reflect individual differences in information processes rather than in the specific 
content of information. 

ECTs are such simple mental tasks that virtually everyone can perform them 
correctly and easily, making RT the only reliable source of variance. In our 
research on the correlations of RT with psychometric g, the ECTs are so easy 
that even for the most complex tasks the RTs average less than one second and 
response errors average less than 5%. Obviously, such tasks could scarcely 
involve what one would think of as cogitation. 

Typical ECTs consist of various forms of simple, choice, and discrimination 
RT (e.g., Hick and odd-man-out paradigms); visual scanning of a set of one to 
seven digits and indicating the presence or absence of a pre-cued “target” digit; 
memory scanning of a set of one to seven digits held in short-term memory and 
indicating the presence or absence of a post-cued “target” digit (i.e., the Stern- 
berg paradigm); retrieval from long-term memory of highly over-learned lexical 
information, using variations of the Posner paradigm in which the subject 
responds “same” or “different” to pairs of highly familiar words that are either 
synonyms or antonyms (e.g., “little-small,’’ “hot-cold”); a semantic verification 
test in which two or three letters (e.g., AB or ABC) are presented for three 
seconds, followed by a statement (e.g., “B after A ’  or “A before B”) to which 
the subject responds either “True” or “False”; and inspection time (IT) in which 
two vertical lines, one twice the length of the other, are presented tachisto- 
scopically side-by-side, followed by a “masking” stimulus, and the subject then 
has to indicate (without time pressure) whether the longer line appeared on the 
right or the left side-the subject’s IT is the length of the interval between the 
onset of the pair of lines and the onset of the “mask” at which the subject can 
respond with 95% accuracy on 20 consecutive trials. All of these paradigms 
yield highly reliable measures of RT (or IT), and these measures are negatively 
correlated with scores on conventional psychometric tests. It is an important fact 
that the magnitude of these correlations is directly related to the degree of the 
psychometric tests’ g loadings rather than to any specific type of information 
content or to whether the psychometric tests were administered under speeded 
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or nonspeeded conditions.’* (For more detailed descriptions of these ECTs and 
evidence of their correlations with g ,  readers may consult References 2, 11, 19, 
20, 21, 22, 23, and 24). 

2.3. Some Salient Facts and Questions Arising from RT Studies 

During the past decade a great many studies have been done on the relationship 
between RT variables, as measured in various ECTs, and psychometric g. In 
most studies g is measured by a single test that is highly g-loaded, such as 
Raven’s Progressive Matrices. Space does not allow description of particular 
experiments, but it is possible to summarize briefly some of the typical findings 
and the key questions they have prompted. 

In order to understand the results of the studies to be discussed, one needs 
some idea of how the data were obtained. ECTs are performed on a response 
console that permits the subject to respond to the reaction stimulus (RS) by 
means of pushbuttons, operated by just the index finger of the subject’s pre- 
ferred hand. To begin a trial the subject depresses a central “home” button. Then 
a 0.5-second auditory preparatory signal (“beep”) sounds, and after a random 
interval of one to four seconds the reaction stimulus (RS) appears. The subject 
is instructed to release the home button and press the response button as quickly 
and accurately as possible. The number of response buttons used in various 
ECTs varies anywhere from one to eight, all equidistant (six inches) from the 
home button. The response buttons are translucent and each one contains a light 
bulb, so that in some ECTs (e.g., simple, choice, and discrimination RT) the RS 
consists simply of one (or more) of the response buttons lighting up conspic- 
uously. In ECTs involving a binary choice the two response buttons are ap- 
propriately labeled (e.g., “Same-Different,’’ True-False,’’ or “Yes-No”). A com- 
puter automatically administers the ECT and records the subject’s performance. 
The three most important variables measured (in milliseconds) by this setup are 
operationally defined as follows. 

Reaction Time (RT) is the interval between the onset of the RS and the 
subject’s release of the home button. (This interval has also been termed 
“Decision Time,” or DT, by some researchers, but DT seems an inappropriate 
term when the interval comprises sensory-motor time as well as the central 
processing time involved in making a decision. Only if the amount of time for 
the sensory-motor activity per se could be removed from this interval would DT 
be an accurate label. Otherwise, RT is the preferred term.) The subject’s overall 
RT score is the median RT over n, the number of test trials on a given ECT. 

Movement Time (MT) is the interval between the subject’s releasing the 
home button and pressing the response button. The overall MT score is the 
median MT over n test trials. 

Intraindividual Variability in RT (SDRT) is the standard deviation (SD) of 
the subject’s RTS over n test trials. 

2.3.1. The Correlation between RT and Psychometric g. In single ECTs, 
the zero-order correlations (Pearson r)  between RT and g are typically in the 
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-.2 to -.4 range, seldom larger, although with proper corrections for attenua- 
tion and restriction of range, they may increase to about -.5. Investigators have 
referred to the “-.35 barrier,” because that value is so typically near the upper 
limit of the most consistently replicable correlations (uncorrected) between g 
and RT obtained from any single ECT of the type previously described. 

The r can be increased appreciably by combining the RTs from several 
different ECTs, either unit-weighted by simple addition or optimally weighted 
by multiple regression. Such correlations are generally in the -.4 to -.5 range, 
and with correction for attenuation and restriction of range they can reach 
about -.6. 

Thus we have three well-established findings that together raise important 
theoretical questions: (1) Why is RT correlated with g? (2 )  Why is there a true 
“ceiling” on the correlation between RT and g for any single ECT or even any 
combination of ECTs? And (3) Why is the correlation between RTs and g 
increased by combining RTs from different ECTs? 

2.3.2. The Correlation between SDRT and g. Intraindividual variability in 
RT, or SDRT, is not a measure of speed but of inconsistency of the subject’s 
RTs across a number of trials. It is usually more highly correlated (negatively) 
with g than is RT, despite the fact that the reliability (split-half and test-retest) 
of SDRT is considerably lower than that of RT. The fact that combining both 
RT and SDRT (as z scores) yields a larger correlation with g than is found for 
either variable alone suggests, but does not prove, that RT and SDRT tap 
independent components of g. More telling is the fact that the zero-order 
correlation between RT and SDRT is high (+.6 to +.7), but it remains con- 
siderably less than perfect after correction for attenuation (about +.8), which 
means that individual differences in these two variables are not merely different 
manifestations of a single source of variance. This finding, too, calls for theoret- 
ical interpretation. 

2.3.3. MT Correlations. MT is much faster than RT (except in the severely 
retarded) and, unlike RT, it varies remarkably little as a function of task 
complexity in different ECTs. MT is less consistently correlated with g than 
is RT. Correlations are typically in the -.lo to -.20 range, and in samples of 
college students are quite commonly close to zero. Mentally retarded adults, 
young children, and the elderly show higher correlations between MT and g 
as well as higher correlations between RT and MT. In young adults of average 
and superior ability, the correlations between RT and MT are only +.3 to +.4, 
and factor analyses of RTs and MTs measured on various ECTs show that 
RT and MT have their largest loadings on different factors. All these find- 
ings underscore the importance of measuring RT and MT separately. An 
amalgam of both variables often weakens correlations with g, and in some 
studies MT may even act as a suppressor variable for the correlation between 
RT and g, so that subtracting MT from RT increases the correlation of g with 
the difference, RT-MT, over that obtained for RT.25 An obvious interpreta- 
tion is that subtracting MT from RT removes a motor-speed component from 
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RT, leaving a purer measure of the information processes, which are related 
to g. 

2.3.4. RT-g Correlation as a Function of Task Complexity. The correlation 
of RT with g increases as a function of independently rated judgments of the 
complexity of the ECT, but only up to a point, beyond which the correlation 
decreases. Hence the relationship resembles an inverted U. In young adults, the 
correlations peak on tasks for which the mean RT is between about 0.8 and 1.2 
seconds. The RT-g correlation decreases rapidly for levels of task complexity 
that make for longer RTs. Also, response errors increase on more complex tasks 
and at some point the correlation between errors and g greatly exceeds the 
correlation between RT and g. 

Our interpretation of this inverted U relationship of the correlation between 
RT and g as a function of task complexity involves three elements: (1) the more 
complex ECTs enlist a larger number of different elementary processes and, 
because g reflects all such processes, there are more processes in common 
(hence higher correlation) between the more complex ECTs and g. (2) More 
complex tasks require more time for information processing and hence put a 
strain on the subject’s working memory, an aspect of short-term memory that is 
a processing system with the properties of limited capacity and rapid loss of 
recently input information. If processing speed loses the race with the rate of 
loss of the information in working memory, there is a “breakdown” in solving 
the “problem” posed by the ECT, and the subject’s overt response will be at the 
chance level for errors. (3) In the more complex ECTs, subjects may resort to 
various strategies for getting around the limitations imposed by processing 
speed and the capacity of working memory. Subjects differ in the tendency to 
adopt strategies, as well as in the stage of practice at which they do so, and they 
may adopt different strategies of unequal effectiveness. These kinds of in- 
dividual differences, at least as they are manifested in the realm of ECTs, 
apparently have little or no relation to g and are included in that part of the 
variance on tasks attributable to some combination of group factors and 
specificity. Hence their presence in the more complex tasks lessens the correla- 
tion of RT with g, while increasing the correlation of rate of response errors 
with g. 

This reciprocal relation between RT and error rate, with respect to their 
correlation with g as a function of task complexity, was seen most strikingly in 
a study20 in which a set of 14 ECTs (semantic verification tests) that differed in 
complexity was administered to college students and to third-grade school 
children. In the college sample, RTs were measured on each task, and these 
ranged, on average, from about .6 sec to 1.4 sec, with a 7% error rate. These 
tasks were relatively much more complex for the third-graders, who were 
administered the very same tasks, but with instructions to take as much time as 
they needed for every task. Even without time pressure they had a 17% error 
rate. The important point, however, is that there was a high correlation between 
the mean RTs of the college students on the 14 tasks and the mean error rates 
of the third-graders on the corresponding tasks. Thus in tasks of low complexity, 
individual differences in g are manifested in RT. As task complexity increases, 
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however, relative to the subjects’ speed of information processing and the 
capacity of working memory, g is decreasingly reflected by RT and increasingly 
reflected by response error rate. 

It should also be noted that the relation between the R T g  correlation and 
task complexity is still problematic, in that there are numerous examples in 
which the predicted relationship is borne out only slightly or not at all, for 
reasons that so far are only speculative.2h This problem most likely involves the 
uncertainty as to the position of the inverted U function with respect to the 
variable of task complexity, a position that varies in different groups according 
to their level of ability. 

The nature of the differences between correct and erroneous RTs was 
illuminated at a physiological level in a study of the trial-by-trial correlation 
between the subjects’ overt RTs and the latencies of the P300 cortical potential 
(EP) evoked by the reaction stimulus (RS) on the same trial.27 The ECTs used 
in this study were three different binary choice RT tasks varying in the com- 
plexity of the hypothesized processes involved in the evaluation of the RS and 
administered under two conditions of speedlaccuracy instructions. Correlations 
between the latencies of the P300 EP and the RTs on correct responses ranged 
from +.48 to +.66, but the correlations based on both correct and incorrect RTs 
were considerably lower (+.26 to +.61). More importantly from the standpoint 
of RT error theory, however, is that not only are the correct RTs relatively more 
closely coupled with their corresponding P300 EP latencies than are the in- 
correct RTs, but with remarkably few exceptions, the correct RTs are slightly 
longer than their corresponding EP latencies, while the incorrect RTs are almost 
invariably much shorter than their corresponding EP latencies. 

These findings indicate that on the incorrect RT trials the overt reaction 
process was initiated long before the process associated with P300 was termin- 
ated. Kutas et al.*’ hypothesize a dual nature of RT as consisting of “stimulus 
evaluation” processes (reflected by the P300 EP) and the efferent processes 
involved in executing the overt response. As there is independent evidence that 
P300 reflects completion of the most central evaluative discrimination or deci- 
sion aspect of information processing, it appears that RT response errors occur 
when the extent of information processing of the RS required for a correct 
response is for any reason incomplete. 

2.3.5. “Peripheral” and “Central” Components of RT. RT reflects two 
conceptually distinct components that can be referred to as peripheral and 
central. The peripheral aspect includes time lag associated with sensory trans- 
duction of the RS plus the motor nerve conduction and muscle action involved 
in response execution. The central aspect of information processing presumably 
lies entirely within the cerebral hemispheres. This locus of information pro- 
cessing includes stimulus encoding and decision time (DT) and is primarily 
responsible for the correlation between RT and g.  As noted in Section 2.3.3, 
simple RT has lower correlations with g than complex RTs (i.e., RTs in response 
to relatively more complex ECTs, such as choice or discrimination RT). We 
have hypothesized that this is due to the fact that a larger proportion of simple 
RT than of complex RT (which is always greater than simple RT) is peripheral. 
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Since variance in the peripheral component is unrelated to variance in the speed 
of information processing, it only attenuates the correlation between RT and g, 
just as would be the case if we added a random error component to RT. All 
forms of RT, of course, comprise both peripheral and central time increments, 
but the more complex RTs comprise larger increments of central processing 
time. This hypothesis receives support from our finding that the correlation 
between discrimination RT and g is increased by subtracting every subject’s 
simple RT from the discrimination RT, so only the central component of 
discrimination RT remains to be correlated with g.21 Thus the peripheral com- 
ponent of RT may act as a suppressor variable in the correlation between RT 
and g. 

2.3.6. Genetic Correlation between RT and g. Three studies provide evi- 
dence that the relationship between RT and g is not only phenotypic but also 
genotypic, that is, they both reflect some common component of genetic vari- 
ance. Intellectually gifted children have both higher g and faster RTs than their 
less gifted siblings, and the RT difference between the gifted and their siblings 
increases as a function of ECT complexity.lY Hence this is a wzthin-family 
correlation, which suggests pleiotropy, i.e., the same genes causing individual 
differences in both RT and g. A pleiotropic correlation between the cognitive 
component of RT and g would be explained most parsimoniously in terms of 
their sharing a common mechanism, namely, speed of information processing. 
Of course, the within-family correlation could also be caused by some unknown 
environmental factor that has an effect on both RT and g. However, there are 
two other studies that make genetic pleiotropy the much more compelling 
explanation. First of all, recall that the g loadings of various psychometric tests 
are directly related to the tests’ heritability coefficients. Also, it has been found, 
using the MZ-DZ twin method for estimating heritability, that the size of the 
correlation between various measures of RT and g is a function of the herita- 
bilities of the various RTS.~* Another study, this one based on twins reared apart, 
also found RT measures of information processing to have substantial herita- 
b i l i t ~ . ~ ~  Finally, by means of a sophisticated multivariate biometrical genetic 
analysis based on twin data, it was possible to determine the genotypic correla- 
tion between RT and g. The analysis showed a common genetic influence on 
both RT and gS3O The authors concluded that their finding supports the hypoth- 
esis that speed-of-processing and IQ may share some common biological 
mechanism(s). 

2.3.7. Distinction between Process Differences and Individual Differences. 
It is theoretically important to recognize that ECTs which reflect different 
cognitive processes do not necessarily interact with individual differences. In an 
analysis of variance of any study based on RTs derived from two or more 
different ECTs, there are main effects for mean differences between ECTs and 
between subjects, as well as an ECTs x subjects interaction. But even with 
highly significant main effects, the interaction may be negligible and 
nonsignificant. In other words, although different ECTs can be expressly de- 
vised to elicit RTs that clearly involve different elements of the information 
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processing system, individual differences may remain invariant across the dif- 
ferent ECTs. This finding indicates that one and the same cause of the individual 
differences acts in both of the different processes. A simple mechanical analogy 
would be two different machines that operate at different speeds and perform 
quite different jobs, but their different output rates are perfectly correlated 
because they are both connected by different sized cogwheels in a gear-train 
driven by a single constant-speed motor. Across different sets (analogous to 
individual differences) of these machines, the only source of (individual) dif- 
ferences in output rates would arise from consistent differences in the speed of 
the motor that drives each set. A striking example of this phenomenon in the 
realm of ECTs is seen in a comparison of the RTs obtained in visual search (VS) 
and memory search (MS) tasks. There are clear process differences in these 
tasks, since the role of short-term memory is nil in the VS task and is crucial 
in the MS task. The process difference is reflected in the significantly different 
average RTs obtained in these tasks. But individual differences in RTs on the 
VS and MS tasks are found to be perfectly correlated after correction for 
a t ten~at ion.~~ Process differences between certain other ECTs, however, do 
show interaction with individual differences, so the disattenuated correlation 
between the RTs on these tasks may be rather low, indicating that they tap 
independent sources of variance in addition to having some source of variance 
in common. 

What all this means is that the sources of individual differences in various 
ECTs do not correspond directly to the different information processes that are 
hypothesized to be involved in the ECTs. Because individual differences do not 
necessarily coincide with different processes, but cut across different processes, 
it may be ultimately futile to try to map the basic dimensions of individual 
differences in terms of the various hypothesized processes of cognitive psychol- 
ogy. Similarly, g defies description in terms of the observable characteristics of 
psychometric tests. In this same connection, Willerrnan and Bailey offer the 
following conjecture: “Correlations between phenotypically different mental 
tests may arise, not because of any causal connections among the mental 
elements required for correct solutions or because of the physical sharing of 
neural tissue, but because each test in part requires the same ‘qualities’ of brain 
for successful performance. For example, the efficiency of neural conduction or 
the extent of neuronal arborization may be correlated in different parts of the 
brain because of a similar epigenetic matrix, not because of concurrent func- 
tional overlap.”32 In other words, correlation without direct functional relation- 
ship. They go on to point out certain functional abnormalities or damage to brain 
structures that severely impair a particular cognitive ability yet may not show 
even the slightest adverse effect on some other ability, even though individual 
differences in the two abilities are normally highly correlated. This relationship 
is analogous to the relationship between strength-of-grip of the left and the right 
hand, which are highly correlated in the population. A complete paralysis of one 
hand, however, may have no effect on the other. Such evidence clearly contra- 
dicts Thomson’s “sampling” theory, which holds that the correlation between 
mental tests is a function of the number of neural elements, or bonds, that they 
involve in common. 
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3. Recent Answers to Key Questions about the RT-g Correlation 

3.1. Is Psychometric g a Unitary Process or Multiple Processes? 

This has been a contentious point throughout the history of g. There are two 
rival hypotheses. 

3.1.1. The unitaryprocess hypothesis holds that some single property of the 
central nervous system (CNS) in which there are individual differences, such as 
in the number of nerve cells, the amount of dendritic branching, the speed of 
neural conduction, metabolic efficiency, or richness of the capillary blood 
supply, etc., determines some part of the variance in the speed, efficiency, or 
accuracy of performance on all cognitive tasks, causing them all to be positively 
correlated and hence to yield a g factor. 

Tasks differ in g loading, according to this hypothesis, for two main reasons: 
(1) The more complex tasks or test items evoke more extensive neural 

activity for a longer period of time, thereby providing a larger and more reliable 
sampling of some unitary property of the CNS. This results in more complex 
tasks’ being more highly correlated with one another and hence more highly 
g-loaded. 

(2) Tasks or tests differ in the degree to which specific acquired knowledge, 
skills, and strategies affect performance, so tests differ in the proportions of their 
variance attributable to these experiential differences and hence differ in g 
loadings to the extent that the variance due to differences in experiential 
influence is independent of g. 

It has been impossible to disprove the unitary hypothesis by any analytic 
techniques when their application is confined to scores on conventional complex 
mental tests from which g is ordinarily derived by means of factor analysis. 

3.1.2. The multiple processes hypothesis holds that g is attributable to a 
number of independent, or uncorrelated, processes, in which there are individual 
differences. The all-positive correlations among the relatively complex mental 
tests that give rise to g result from the fact that a number of independent 
elemental processes are involved in any particular test, so various tests all have 
some processes in common and hence are correlated. More complex tests 
involve a larger number of processes, thereby increasing the probability of 
having more processes in common with other tests and consequently showing 
higher correlations with other tests-a necessary corollary of highly g-loaded 
tests. This would also explain why more complex tasks show greater variance 
than less complex tasks. Each of the elemental processes that enters into the task 
performance contributes an independent source of variance, and since variances 
are additive and since more complex tasks involve more processes, they will 
show greater variance than less complex tasks. This holds true, of course, only 
provided that performance on the complex tasks has not become highly auto- 
matized by extensive practice. 

3.1.3. A Critical Test of the Unitary versus Multiple Processes Hypoth- 
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eses. A methodology proposed2 for deciding between the unitary and multiple 
hypotheses is based on the following argument: If two or more uncorrelated 
variables, e.g., A, B, C, are significantly correlated with another variable, X, 
then X cannot be unitary, but must contain within it components of variance in 
common with each of the independent variables A, B, C .  This logic can be used 
to test the unitary hypothesis of g by the following steps: 

(1) Obtain a good hierarchical g by factor analyzing a fair-sized battery of 
diverse psychometric tests in a sizeable group of subjects. 

( 2 )  Obtain RTs, MTs, and measures of intraindividual variability in RT and 
MT (i.e., SDRT and SDMT) on a fair number of diverse ECTs that tap a number 
of different information processes. 

(3) Do a principal components analysis on all of the measures derived from 
the ECTs. For the present purpose, principal components analysis has the 
distinct advantage, over any type of common factor analysis (e.g., principal 
factors, or principal axes), of yielding component scores (analogous to factor 
scores) that are perfectly uncorrelated. Factor scores derived from a common 
factor analysis can be correlated to some extent, even though the factors them- 
selves are perfectly orthogonal (i.e., uncorrelated). (This is because factor scores 
can never be determined exactly, but can only be estimated and therefore may 
contain correlated error components.) 

(4) For every subject, obtain a g factor score (based on the psychometric 
battery) and principal component scores based on all of the significant com- 
ponents (i.e., those with eigenvalues > 1) derived from all of the ECT variables. 

(5) Use the principal component scores as the independent variables in a 
stepwise multiple regression analysis, with g factor scores as the dependent 
variable. 

(6) If more than one (any one) of the principal components adds a statis- 
tically significant increment to the multiple correlation, the unitary theory of g 
is thereby refuted. The only possible escape from this conclusion would be to 
claim that the g contained “impurities” (i.e., some reliable component of non-g 
variance). This could occur if the g were obtained from an insufficiently diverse 
battery of tests. (For example, the general factor in a battery comprised entirely 
of various verbal tests, such as vocabulary, similarities, analogies, synonyms- 
antonyms, etc., would not be g per se, but an amalgam of g and a verbal ability 
factor.) Of course, if no more than one principal component made a significant 
contribution to the multiple correlation, it could not prove that the unitary theory 
of g is true, because one could always argue that the “right” ECTs had not been 
included in the principal component analysis. A mounting number of studies 
based on more and different ECTs could only increase the likelihood that the 
unitary theory is true. 

The unitary hypothesis was empirically tested using this methodol- 
ogy.” From a hierarchical factor analysis of a battery of eleven diverse psycho- 
metric tests, g-factor scores were obtained in a group of 101 college students. 
They were also administered eight different ECTs, including simple, choice, and 
discrimination RT, inspection time, visual scan, memory scan, and speed of 
retrieving highly over-learned semantic information from long-term memory. 
Each of the tasks yielded RT and MT and their intraindividual variabilities, 
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SDRT and SDMT, making a total of 32 variables. These were subjected to a 
principal components analysis, and component scores on the 10 largest com- 
ponents were obtained for every subject. It turned out that four of these com- 
ponents, when entered into a stepwise multiple regression, each contributed 
significant increments to the prediction of g. The simple correlation (Pearson r)  
of the first principal component factor scores with the psychometric g factor was 
.38; the multiple correlation (R)  based on all four of the principal components 
that added significant increments to the R was .54. Corrected for restriction of 
range of 10 in this college sample, R = .66. 

This outcome seems to contradict the hypothesis that g has a unitary basis, 
but the issue is still a r g ~ a b l e . ~ ~ , ~ ~  

But the first principal component of the E m s ,  which accounts for by far 
most of the correlation of the ECTs with g, represents mainly a general speed 
factor, on which the various RTs have the largest loadings. Hence it is important 
to note that not every (independent) significant component of all of the variance 
in ECTs is anywhere near being equally related to g. The two most g-related 
independent components that emerged from the analysis are RT, which reflects 
speed of information processing, and SDRT, which reflects intertrial variability 
or oscillation in processing speed. It is especially noteworthy that the factor- 
extracted from all of the ECT variables-that mainly represents MT in the 
various ECTs is quite unrelated to g ( r  = .03). Thus MT, when represented by 
a factor that is completely uncorrelated with RT and SDRT, apparently reflects 
motor speed and dexterity and has no relation to g or information processing. 
This finding contradicts attempts to explain the correlation between various 
ECTs and g in terms of individual differences in the degree of effort or motiva- 
tion subjects bring to both types of tasks, since there is no basis for supposing 
that motivational differences would have an effect on RT while having no effect 
on MT. 

3.2. The Divided Nature of RT 

The same data also throw light on the puzzle, mentioned previously (section 
2.3.1), of the ceiling on the correlation between RT and g .  The largest multiple 
correlations reported between the RTs based on a number of diverse ECTs and 
psychometric g top out near .65, or about 40% of the g variance accounted for 
by the optimally weighted combination of RTs from several ECTs representing 
different information processes. Corrections for attenuation and restriction of 
range seldom raise this correlation much above .70. 

Why should there be this apparent ceiling on the size of the RT-g correla- 
tion? One obvious hypothesis, which has been most clearly spelled out by 
D e t t e r m a ~ ~ , ~ ~  is that g arises from the variance contributed by a number of 
uncorrelated elemental processes. If individual differences in each process 
were correlated, say, .30 with g,  thus each accounting for .302 = .09 of the true 
variance in g, then 11 such independent processes would be needed to account 
for nearly all of the true variance in g. This plausible hypothesis seems to have 
two main problems: (1) it is essentially not testable unless one can account for 
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very nearly all of the true g variance by some reasonably small number of 
uncorrelated process measures or uncorrelated factors derived from a number 
of ECTs that reflect a large number of independent processes, and it seems 
doubtful that independent components of variance derived from various ECTs 
that are devised to reflect all of the different information processes that have 
been hypothesized to exist would add up to accounting for much more than 
about 50% of the g variance; and (2) probably because of the substantial 
correlations between process measures, there appears to be a curve of rapidly 
diminishing returns from including more and more ECTs to a multiple regres- 
sion equation for predicting g, such that the percentage of variance in g ac- 
counted for by the ECTs asymptotically approaches some value closer to 50% 
than to 100%. Hence the multiple-process hypothesis of the RT-g ceiling needs 
to be supplemented by another hypothesis to explain the ceiling on the RT-g 
correlation. 

A supplementary explanation of the ceiling on the RT-g correlation is 
suggested by these data. When the entire battery of psychometric tests and the 
ECT variables are factor analyzed together in a hierarchical analysis, there 
emerges a large second-order g factor on which all of the psychometric tests and 
the RTs and SDRTs of the ECTs are substantially loaded. There is a direct 
relationship between the complexity of the ECTs and the size of their loadings 
on this factor. (All MTs have near-zero loadings on this factor.) But here is the 
most important point: there is also a first-order factor on which only the RT 
measures, and to a lesser degree MT measures, are substantially loaded, while 
all of the psychometric tests have near-zero loadings on this factor. It could be 
called a “noncognitive RT” factor. Also, there is a direct negative relationship 
between the complexity of the ECTs and the sizes of their RT loadings on this 
factor. 

The total common factor variance associated with RTs is divided about half 
and half between the g factor and the noncognitive RT factor. The g variance 
on the RTs and SDRTs of all of the ECTs constitutes, on average, about 40% 
of the communality (i.e., the common factor variance) of the RTs and SDRTs. 
But the g variance of RT and SDRT averages only about 25% of the total 
variance of RT and SDRT, which is equivalent to an average g loading of about 
S O .  This value, if corrected for attenuation and restriction of range, would 
estimate the true ceiling of the RT-g correlation in the general population. It 
would be close to .70. 

The noncognitive components of RT, which are presumably independent of 
the speed of information processing per se, probably reflect the sensory-motor 
aspects of RT. (Although the time taken up by sensory-motor functioning may 
constitute only a small fraction of the total RT, especially RT on relatively 
complex ECTs, it could constitute a considerably larger fraction of the total 
variance in RT.) Hence the ceiling on the R T g  correlation is fixed by the 
proportion of the total RT variance that is attributable to three sources: (1) the 
noncognitive RT factor, (2) an ECT-specific factor, and (3) measurement error. 
If these three sources of variance could be eliminated from RTs and SDRTs 
obtained on a diverse battery of ECTs, their multiple correlation with g might 
well approach unity. 
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3.3. In formation Processing: Top-Down or Bottom-Up? 

This has been another central question. The two main rival hypotheses 
explain the RT-g correlation quite differently. 

(1) The top-down hypothesis holds that the higher-level mental processes, 
which are obviously required for the kinds of complex problem solving seen in 
the most highly g-loaded psychometric tests, govern an individual’s RT on even 
relatively simple tasks via strategies, the so-called executive or metaprocesses, 
and “attentional resources.” Therefore, the causal locus of individual differences 
in RT, as in g, is in the higher-level mental processes, which critically affect the 
lower-level processes manifested in such variables as choice RT and IT (in- 
spection time). 

(2) The bottom-up hypothesis does not deny the existence of high-level 
processes, of course, but holds that there are stable individual differences in 
relatively simple but pervasive neural processes, such as nerve conduction 
velocity and synaptic delay, which affect the speed and efficiency of the trans- 
mission of information in the CNS, and that these properties are involved to 
some degree at all levels of information processing, from that of the simplest 
tasks such as choice RT and IT to that of the complex items of conventional IQ 
tests. Hence there is a correlation between individual differences in, for ex- 
ample, discrimination RT and the g of complex psychometric tests. 

3.3.1. Nerve Conduction Velocity (NCV) in the CNS and g. Investigations 
by Reed37 of the heritability of individual differences in NCV in mice led to his 
hypothesizing NCV as a physiological basis for the heritability of g.3833y A 
critical test of this hypothesis produced results consistent with the bottom-up 
hypothesis.m Short-latency visually evoked potentials (VEPs “70 and P100) in 
response to pattern-reversal stimulation and recorded over the primary visual 
cortex showed highly reliable individual differences in 147 college males. The 
latencies of the earliest clearly-defined neural impulses to be transmitted from 
the retina through the visual tract to the visual cortex are very short-70 to 100 
msec. In order to obtain approximate measures of individual differences in 
nerve conduction velocity, i.e., distancehime, it was necessary to take into 
account individual differences in head size. The estimate of an individual’s 
NCV was obtained by dividing his head length by the mean latency of the VEP. 
The resulting approximate measures of NCV (here labeled V:P70 and V:PlOO) 
were found to be significantly correlated with IQ scores on Raven’s Advanced 
Progressive Matrices, a highly g-loaded nonspeeded, nonverbal test of complex 
reasoning ability. The correlation for V:N?O was +.18 (p = .025) and for 
V:PlOO, +.26 (p = .002). Correction for the restriction of range of IQ in the 
college sample raises these correlations to +.27 and +.37, respectively. FIGURE 
1 shows the mean IQ of these college students at each quintile of the V:PlOO. 

The theoretical significance of this finding is based on the fact that the 
latencies of neural impulses through the visual tract and recorded on the visual 
cortex are very much shorter than the total amount of time needed for the neural 
impulses to reach the higher cortical centers involved in solving Raven Matrices 
problems, and therefore the VEP latencies could not be affected by any top- 
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FIGURE 1. Distribution of mean IQ 
scores (2SE) in V:P100 quintiles. The 
distribution of V:PlOO values (i.e., the 
NCV based on the PlOO latency) of the 
147 students, from the lowest NCV 
(1.75 m/sec) to the highest (2.22 m/sec) 
was divided into quintiles. Quintile 1 
contains the 20% of students with the 
lowest V:PlOO values, quintile 2 con- 
tains the 20% of students with V:PlOO 
values between the 20th and 40th per- 
centiles, etc. The linear regression of 
individual IQ on quintile number (1, 
2 , .  . . ) has a slope of 2.21 IQ points 
per quintile, with no significant devia- 
tion from linearity. 
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down processes. The explanation for the observed correlation between NCV in 
the visual tract and g rests on the reasonable hypothesis that, since the neurons 
in the visual tract and in the cortex share a common origin and have common 
features ( e g ,  small caliber axons and similar conduction speeds), they are 
themselves very similar, and thus individual differences in visual tract NCVs 
and cortical NCVs are correlated (Reed and Jensen, submitted for publication). 
Because information is transferred from one cortical region to another via axons 
at some velocity and across synapses with some delay, the mean cortical NCV 
and cumulative synaptic delay would affect the speed of information processing 
at every level of cognitive complexity. Individual differences in mean cortical 
NCV, therefore, seem a most plausible component of g. 

This hypothesis does not in the least contradict the obvious necessity of 
hypothesizing specific neural structures and their complex functional organiza- 
tion or patterning to explain the facts about information processing. At present 
we have virtually no knowledge of the extent to which these design features of 
cortical functioning contribute to indiv-idual differences in cognitive abilities. 
But we do have evidence now which suggests that brain NCV alone may 
account for a substantial part, perhaps as much as 25%, of the g variance in the 
general population. 

3.3.2. Peripheral Nerve Conduction Velocity and g. It is still quite un- 
certain whether NCV in peripheral afferent or efferent nerves is correlated with 
g .  A positive correlation was first hypothesized by on the supposition 
that NCV in peripheral nerves would have some relationship to cortical NCV. 
Three independent studies that were expressly designed to test this hypothesis 
have shown seemingly contradictory results. 
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First, Vernon and MoriI8 measured NCV in the median nerve of the forearm 
in 85 college students and found a correlation of +.42 between NCV and g,  and 
a correlation of -.28 between NCV and RT. (RT and g were correlated -.44.) 
Also, the higher the g loadings of the ten subtests in a multi-aptitude battery, the 
higher were the subtests’ correlation with NCV. It could hardly be more beauti- 
ful! 

found no significant correlation between NCV 
(measured via sensory nerve action potentials in the median nerve between the 
middle finger and the wrist) and IQ (Raven Advanced Progressive Matrices) in 
a quite heterogeneous group of 44 adults. However, significant correlations 
were found between the intertrial variabilities (i.e., within-subject SDs) of the 
sensory nerve action potential latencies and IQ. When the variabilities of the 
median nerve action potential latencies measured in the right and left hands were 
entered into a multiple regression to predict IQ, the overall shrunken multiple 
R is about SO. The authorsz5 caution that their correlations “must be viewed as 
no more than exploratory values that require replication” (p. 10). 

based on 200 male college students between 18 and 
25 years of age, found completely nonsignificant and near-zero correlations 
between NCV in the median nerve of the forearm and the following variables: 
(1) IQ (Raven Advanced Progressive Matrices), ( 2 )  RT on three different ECTs 
of increasing complexity, and (3) brain NCV (i.e., visual pathway, from retina 
to occipital lobes). 

The discrepant results of these three studies have no obvious explanation, 
although it should be noted that they differ in their methods for measuring NCV 
in the median nerve. Just how these procedural differences could affect the 
results is still mysterious. Replications are obviously essential, and Vernon and 
Mori (personal communication) are presently repeating their study. 

But then another 

The most recent 

3.4. The Relation between Speed of Information Processing and the 
Capacity of Working Memory 

If there is a principal focus of g variance in the processing system, most 
cognitive theorists would probably point to working memory (WM), a hypothet- 
ical construct regarded as the central information processing unit. A component 
of short-term memory (STM), WM comprises the functions of focusing atten- 
tion, conscious rehearsal, and transformation and mental manipulation of in- 
formation received from external sources or retrieved from long-term memory 
(LTM). WM is the active aspect of STM. Some theorists do not distinguish 
between the passive and active aspects of STM, but it is theoretically useful to 
do so. STM comprises both primary memory and working memory. Primary 
memory is the passive holding station for recent input. The WM plays the active 
role, manipulating or transforming the input. 

Both primary memory and WM are called short-term memory (STM) sys- 
tems because the neurally encoded traces of information in them undergo rapid 
loss and become inaccessible within a matter of seconds, unless they are 
continuously rehearsed until consolidated in LTM. Transferring information 
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from STM into LTM is one of the functions of WM. The storage capacity of 
LTM is practically unlimited. But a crucial characteristic of STM is its very 
limited capacity. This limitation means that WM can deal with only a certain 
small amount of information per unit of time, which some theorists express as 
number of bits per second. (A bit is the binary logarithm of the number of 
alternative choices in a decision process, or the amount of information needed 
to reduce uncertainty by one-half). An excessive rate of information input 
overloads the capacity of WM, causing a “breakdown” of processing and a loss 
of information. Who has not looked up a phone number, and then, just before 
dialing it, is asked a question that demands a quick answer? 

Empirically, there is an intimate relationship between the capacity limitation 
of WM and the speed ofprocessing as measured by RT tasks. In a so-called dual 
task paradigm, in which the subject must attend to two distinct tasks either 
simultaneously or in quick succession, RT appears to be a sensitive indicator of 
capacity. Significantly, the RT in such dual tasks turns out to be more highly 
correlated with g than the RTs on either of the single tasks. For example, if a 
person is presented a set of several digits to retain for later recall, then we 
immediately require the person to perform a choice RT task, and then cue the 
person to recall the digits, we find that the person’s RT is significantly longer, 
on average, than when RT is measured by the same choice RT task when it is 
unaccompanied by the digit span task. It is as if RT is at least partly a function 
of the available capacity of WM. The more fully WM is occupied, the slower 
is the reaction to an external stimulus. 

Capacity seems a necessary concept for understanding g, because persons 
do not show the same rank order in ability on tasks that place greater or lesser 
amounts of strain on WM. If there were just a single cause of individual 
differences, say, speed of processing, then we should expect a perfect (dis- 
attenuated) correlation between single-task RT and dual task RT, for example. 
Yet there is not a perfect correlation. Another example is the comparison of 
forward digit span (FDS) and backward digit span (BDS): they are not perfectly 
correlated. BDS is subjectively harder than FDS, fewer digits can be recalled in 
the BDS than in the FDS task, and apparently the mental operation of reversing 
the digit series in BDS takes up more of the capacity of WM than is taken up 
by FDS. Interestingly, BDS has almost double the correlation with IQ as FDS.42 

Most cognitive theorists believe that at least two distinct fundamental vari- 
ables are needed to explain g: (1) the speed of information processing, and ( 2 )  
the capacity of STM (including WM). But how can we conceptualize the 
connection between capacity and processing speed? Psychologists in Erlangen, 
Germany, have given this problem the most attention so far.43They argue 
essentially that the capacity (C) of STM (expressed in bits of information) is the 
product of the speed (S) of information flow (or processing speed, in bits per 
second) and the duration time (D) of information in STM absent rehearsal. That 
is, C bits = S bits/sec x D sec. Assuming that the parameters S and D are to some 
degree independent sources of variance, this formulation is consistent with the 
previously described phenomena related to dual tasks and to forward and 
backward digit span. 

Experiments by the Erlangen psychologists have empirically obtained esti- 
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mates of these parameters in average adults, approximately, of S = 15 bits/sec, 
D = 5 to 6 sec, and C = 80 bits. Accordingly, for this theory, a measure of the 
capacity of WM should be more highly correlated with g than is a measure of 
processing speed alone. Lehrl and F i ~ c h e r ~ ~  report correlations of .67 and .88 
between their experimental measure of STM capacity (as C = S x D) and scores 
on a vocabulary test in two samples of adults, with Ns of 672 and 66, respec- 
tively. (Vocabulary is loaded on a verbal factor but is also typically the most 
highly g-loaded test in psychometric batteries.) Thus individual differences in 
measurements derived from exceedingly simple tests that are virtually devoid 
of intellectual content but which provide estimates of processing speed and the 
duration of information in STM are correlated to a remarkable degree with 
individual differences in an especially complex and highly g-loaded cognitive 
ability such as vocabulary. 

4. Structural and Design Features of the Brain 

After all that has been said about speed of information processing and its 
neural correlates, we must recognize that there are probably other aspects of the 
physical basis of g that are possibly of equal or even greater importance. The 
main problem at present, however, is our almost total ignorance of the extent of 
individual differences in the structural features of the brain and the degree to 
which they are related to g. 

Theory and research on the relation of anatomical, physiological, and neural 
architectonic aspects of the brain to mental abilities and other types of behavior 
have focused mainly on particular classes of performance (e.g., language, 
memory, hemispheric functions) rather than on individual differences, at least 
among neurologically intact persons whose cognitive abilities are within the 
normal range. Although this nomothetic aspect of brain research, focused pri- 
marily on the localization and structural substrate of psychological functions, is 
extremely important in its own right, it affords few clues at present about the 
nature of g. With the rapid advances in this branch of neuroscience, however, 
it should soon become a source of potentially (though not easily) testable 
hypotheses concerning those design aspects of the brain that might explain some 
part of g not accounted for by general speed of information processing. I 
suspect, however, that individual differences in localized neural structures will 
much more likely account for the so-called groupfactors, such as verbal, spatial, 
and musical abilities, than for g per se. 

Many specialized abilities displayed by humans are so complex in terms of 
the amount of information processing involved that a linear model of informa- 
tion transmission in which NCV is the main source of variance would be 
entirely inadequate to explain the rapidity of performance times for highly 
complex tasks. For example, Shakuntala Devi, the famous calculating prodigy, 
is able mentally to extract cube roots (or many other roots) of enormous 
numbers in the hundreds of millions in just a few seconds, yet she is not 
especially exceptional either in g or in speed of information processing on a 
variety of E C T S . ~ ~  Hence it is necessary to hypothesize certain structural design 
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features of the neural substrate, such as parallel processing, hierarchical orga- 
nization of neurones, automatization of selecting and executing complex algo- 
rithms, and the like. That these features of brain organization may be an 
important source of individual differences, at least for specialized abilities if 
not for g, is suggested by the astounding performances of prodigies in mathe- 
matics, music, and 

Willerman and Raz4 have hypothesized several distinct features of the 
brain that might contribute to g. Most basic, perhaps, is the number of cortical 
cell analyzers, including their organization and degree of interconnectedness as 
reflected by the size or number of association and commissural nerve fibers in 
the white matter underlying the cerebral cortex. It is noted that, compared with 
other species, humans have a higher proportion of cortical white matter in 
relation to gray matter. The white matter consists of the myelinated fibers of 
the cortical neurons, which are called association fibers, as they interconnect 
neurons within each hemisphere. The myelinated commissural fibers intercon- 
nect neurons across the two hemispheres. Willerman and Raz hypothesize as 
follows: “The association and commissural fibers would seem especially rel- 
evant to intelligence because they probably represent important neurological 
underpinnings for educing relations and correlates, or more simply put, making 
connections between disparate cognitive elements and applying them to new 
problems” (p. 9). But there have been no systematic studies of individual 
differences in the size or number of association fibers, or of their relation 
to g.. 

Spearman originally discovered that pitch discrimination is correlated with 
g, and his finding has been confirmed by subsequent studies!’ This fact would 
seem hard to explain in terms of individual differences in speed of information 
processing or NCV per se. Noting this problem, Willerman & Raz46 propose 
the following hypothesis: “Neurons varying in central frequencies and band- 
widths can be organized to produce many features of intelligent functioning as 
indexed by our discrimination experiments. In the auditory domain, one neuron 
might be especially sensitive to hair cells that have a modal firing frequency 
of 800 to 810 Hz, another sensitive to frequencies of 805 to 815 Hz. In 
addition, their conjoint activation could trigger a third neuron,. . . referred to 
as a ‘grandmother’ cell. An activated grandmother cell indicates that the 
specific frequency of the sensory signal must have been between 805 and 810 
Hz. By adding increasing layers to the hierarchy of neurons, for example, great 
grandmother cells that fire only when two grandmother cells are simulta- 
neously activated, the frequency of the original signal can be retrieved with 
increasingly greater precision. Therefore, it seems reasonable to propose the 
theory that intelligent people have a greater number of cortical elements ar- 
ranged in some hierarchical order which permits finer analysis of signals” (p. 
9). Of course, the fact that pitch discrimination is g-loaded suggests that there 
must be other such hierarchical neural structures, probably of common epi- 
genetic origin and hence with correlated individual differences, that play a part 
in many other forms of information processing besides auditory discrimination. 

Finally, Willerman and Raz46 consider biochemical factors as possibly con- 
tributing to g. They exclude specific neurotransmitters, as these vary widely and 
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seem to be keyed to localized regions and specialized functions, while g implies 
a much broader causal factor. But they hypothesize that “certain ions (e.g., 
K+ and Ca++) are ubiquitous in all forms of chemical neurotransmission and 
variations in their concentrations and transport might be candidates for an 
endogenous physiological process underlying the general factor in intelligence” 
(P. 10). 

5. Conclusion 

Psychometrically, the existence of g is an established fact. Its causal nature, 
however, is still far from being fully understood, although recent research aimed 
toward this goal has brought forth fairly impressive empirical evidence that g 
is more closely related to a biological state of affairs than probably any other 
mental ability factors independent of g .  Considerable evidence also supports the 
theory that a large part of g is attributable to individual differences in the speed 
of information processing, with its physiological counterpart, neural conduction 
velocity in the brain, which is also found to be correlated with g .  Evidence now 
favors, but has not proved decisively, the hypothesis that g is not unitary in the 
sense of being attributable to some single property of the brain, but comprises 
independent sources of variance that must be attributable to a probably quite 
limited number of distinct brain processes. Recent advances in the neuro- 
sciences afford several plausible hypotheses, as yet untested, of structural and 
biochemical properties of the brain that could possibly contribute to g. 

Hence the prospect of achieving an empirically valid theory of the causal 
nature of g now looks remarkably promising. And if there is still any doubt that 
important strides have been made in this direction since Spearman’s day, it 
should prove instructive to compare the present picture with the rather fain- 
thearted and pessimistic view of this endeavor envisaged by Spearman.48 He 
wrote as follows: “We have introduced no hypothesis as to the essential nature 
of what is measured by g .  . . . But for scientific ends, there is much advantage 
in doing so. For the purpose of building up an intelligible whole, and also for 
that of inspiring further investigation, there is urgent need of framing-however 
tentatively and provisionally-some or other explanatory hypothesis” (p. 414). 
“And even should the worst arrive and the required physiological explanation 
remain to the end undiscoverable, the mental facts will none the less remain 
facts still. If they are such as to be best explained by the concept of an underlying 
energy, then this concept will have to undergo that which after all is only what 
has long been demanded by many of the best psychologists-it will have to be 
regarded as purely mental” (p. 408). 

It would be most surprising indeed if Spearman would have entertained the 
thought of such an unsatisfactory outcome for the theory of g if he had foreseen 
the findings of the research summarized in this paper. In the next two or three 
decades, as progress in neuroscience continues apace, the kind of g theory that 
Spearman hopefully envisaged might well be empirically substantiated-in his 
words, “whereby physiology will achieve the greatest of all its triumphs” (p. 
407). 



JENSEN: SPEARMAN’S g 127 

6. Summary 

Individual differences with respect to diverse tests of mental abilities that 
range in complexity from simple reaction time to abstract reasoning are all 
positively correlated in the population. The total covariance among all such tests 
can be analyzed into a number of uncorrelated components of variance, or 
factors, that, in terms of their generality, are hierarchical, with the most general 
factor, or g, at the apex. This g factor is common to every type of cognitive 
performance, whatever other ability factors may be involved (e.g., verbal, 
spatial, numerical, musical, etc.), and is the crucial factor in most tests’ practical 
validity. Its correlations with various tests’ heritability, inbreeding depression, 
heterosis, average evoked potentials, brain metabolism, and many other phys- 
ical correlates indicate that as a product of evolution it is profoundly enmeshed 
with many organismic variables. A theory based on empirical evidence links g 
to neural processes involved in the speed and efficiency of information pro- 
cessing. 
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