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The g Beyond Factor Analysis 

Arthur R. Jensen 
University of California, Berkeley 

The problem of g. essentially , concerns two very fundamental questions: (I) 
Why are scores on various mental ability tests positively correlated? and (2) Why 
do people differ in performance on such tests? 

SOME DEFINITIONS 

To insure that we are talking the same language, we must review a few defini­
tions. Clarity, explicitness, and avoidance of excess meaning or connotative 
overtones are virtues of a definition. Aside from these properties, a definition per 
se affords nothing to argue about. It has nothing to do with truth or reality; it is a 
formality needed for communication. 

A mental ability test consists of a number of items. An item is a task on which 
a person's performance can be objectively scored, that is, classified (e.g., 
"right" or "wrong," 1 or 0) , or graded on a scale (e.g., "poor," "fair ," 
"good," "excellent," or 0 , 1, 2,3), or counted (e.g., number of digits recalled, 
number of puzzle pieces fitted together within a time limit) , or measured on a 
ratio scale (e .g. , reaction time to a stimulus or the time interval between the 
presentation of a task and its completion). Objectively scored means that there is 
a high degree of agreement between observers or scorers or pointer readings in 
assigning a score to a person's performance on an item. 

An item measures an ability if performance on the item can be objectively 
scored such that a higher score represents better performance in the sense of 
being more accurate, more correct, quicker, more efficient, or in closer confor­
mance to some standard-regardless of any value judgment concerning the 
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aesthetic, moral, social, or practical worth of the optimum performance on the 
particular task . An item measures a mental (or cognitive) ability if very little or 
none of the individual differences variance in task performance is associated with 
individual differences in physical capacity, such as sensory acuity or muscular 
strength, and if differences in item difficulty (percent passing) are uncorrelated 
with differences in physical capacities per se. 

In order for items to show individual differences in a given group of people , 
the items must vary in difficulty; that is, items without variance (0% or 100% 
passing) are obviously nonfunctional in a test intended to show individual dif­
ferences. A test, like any scientific measurement, requires a standard procedure. 
This includes the condition that the requirements of the tasks composing the test 
must be understood by the testee through suitable instructions by the tester; and 
the fundaments of the task (i .e., the elements that it comprises) must already be 
familiar to the testee. Also, the testee must be motivated to perform the task. 
These conditions can usually be assured by the testee's demonstrating satisfacto­
ry performance on easy exemplaries of the same item types as those in the test 
proper. 

Mental ability tests (henceforth called simply tests) that meet all these condi­
tions can be made up in great variety, involving different sensory and response 
modalities , different media (e.g., words, numbers, symbols, pictures of familiar 
things, and objects), different types of task requirements (e.g ., discrimination, 
generalization, recall, naming, comparison, decision, inference), and a wide 
range of task complexity. The variety of possible items and even item types 
seems limited only by the ingenuity of the inventors of test items. 

SOME FACTS OF NATURE 

When a collection of such items is given to a large representative sample of the 
general population under the specified standard conditions, it is found that there 
is an abundance of positive correlations between the items; negative correlations 
are very scarce and are never as large as the positive correlations, assuming, of 
course, that all the items are scored in such a way that what is deemed as the 
desirable performance on every item receives a higher score than undesirable 
performance. The negative correlations are not only scarce and small, they 
become scarcer and smaller as the number of persons increases , suggesting that 
the existence of negative item intercorrelations in the abilities domain is largely 
or entirely due to error. There is no corresponding shrinkage of the positive inter­
item correlations with an increase in sample size. If a fair number of items having 
authentically and reliably negative correlations with the majority of items could 
be found , it should be possible to combine a number of such negative items to 
create a test that would have the usual properties of a good psychometric test in 
terms of internal consistency reliability and test-retest reliability. Such a test then 
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should show large negative correlations with tests composed by sampling only 
from the majority of items that are positively intercorrelated. No such "nega­
tive" test has ever been created, to my knowledge. The creation of such a test is 
a challenge to those who doubt the phenomenon of positive manifold, that is, 
ubiquitous positive correlations among items or tests in the ability domain . 

But a correlation matrix will also tend to be predominantly positive by pure 
mathematical necessity . While it is entirely possible (and usual) for all of the 
correlations among n tests to have positive values ranging between 0 and + 1, the 
negative counterpart to this condition is a mathematical impossibility. In a matrix 
of zero-order intercorrelations, negative values are constrained. If variables A 
and B are negatively correlated - I, it is impossible that both can be negatively 
correlated with variable C, or D , or any other variable . While the average size of 
all the correlations in a matrix can have any positive value between 0 and + 1 , the 
largest possible average negative value of all the correlations in any matrix of n 
variables is -lI(n - I); hence , if the negative correlations are large, they must 
be few, and if they are not few , they must be small. Although there is a 
mathematical limitation on negative correlations, the proportion and size of the 
positive interitem correlations actually found in the ability domain far exceeds 
the amount of positive intercorrelations that would be expected by chance. 

Yet the generally positive correlations between items, as a rule, are rather 
surprisingly small. Given the internal consistency reliability (K-R 20), rxx ' of a 
test of n items, the average item intercorrelation , Ti} ' is Ti} = rx) [n - r,rx(n - I)]. 
In the case of even such a homogeneous test as the Raven Progressive Matrices, 
the value of Ti} is only about +.12 or + . 13 . The small correlations are partly due 
to an artifact, namely , the restriction of variance as the item difficulty of di­
chotomously scored items departs from .50. Even after correcting for the effect 
of this restriction of variance on the correlations, however, it is apparent that 
single test items have relatively little of their variance in common. In fact, 
typically less than a quarter of the variance of single items overlaps the total 
variance of any collection of n such items , even when the items are homogeneous 
in type . The collection of items may be a random sample from a large pool of 
diverse items, in which case the average interitem correlation would be relatively 
low, or it may be a selection of highly similar, or homogeneous , items , in which 
case the average item intercorrelation will be relatively high . But even the high 
interitem correlations will average only something between about + .10 and 
+.15. 

Nevertheless , interitem correlations greater than 0 and less than .15 are large 
enough to create a test with a very substantial proportion of reliable or true-score 
variance, provided the number, n, of items composing the test is large enough. 
This is inevitable, because the reliable variance of total scores on a test is equal to 
the sum of all the interitem covariances in the square matrix of interitem covari­
ances. A test of n items with an average interitem cOll'elation of T i} will have an 
internal consistency (K-R 20) reliability of rxx = nfj [I + (n - I)f;) . Conse-
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quently, by increasing the number of items sampled from the ability domain , as 
previously defined , one can create a test of any desired reliability (less than 1) . 
Most standard tests have reliabilities greater than .90 when used on samples of 
the general population. When a number of such highly reliable ability tests, 
comprising diverse contents and item types, are administered to a representative 
sample of the general population , the intercorrelations of the tests are all positive 
and generally substantial. In other words, the various tests have a lot of variance 
in common. 

This seems to be an unavoidable fact of nature. It has proven impossible to 
create a number of different mental tests, each of highly homogeneous items, and 
with high reliability , that do not show significant correlations with one another. 
The' 'positive manifold " of test intercorrelations is indeed a reality , a fundamen­
tal fact , that call s for scientific explanation. 

A hypothesized explanation of the correlation between any particular pair of 
different , but singly homogeneous, tests will often point to certain common 
surface features of the two tests that may seem to plausibly account for their 
correlation. But hypotheses of thi s kind run into greater and greater difficulty as 
they try to explain intercorrelations among diverse tests. The surface features of 
tests soon prove inadequate to the explanatory burden when the number and 
diversity of tests increases but still displays positive manifold . it is well-nigh 
impossible, for example, to account for the correlations between vocabulary, 
block des igns, and backward digit span in terms of common features of the tests. 
Explanations of correlations in terms of the surface features of tests would turn 
out to require nearly as many explanations as there are pairs of different , but 
correlated, tests. From the viewpoint of sc ientific theory, such a multiplicity and 
specificity of explanations is quite unsatisfactory, if not entirely unacceptable , 
and, in fact , no one systematically even attempts it. 

Psychometricians since Spearman have preferred to describe the intercorrela­
tions among a number of tests in terms of a smaller number of hypothetical 
factors (i.e . , sources of variance) that certain tests have in common. The burden 
of explanation , therefore, shifts from explanations of single correlations between 
particular pairs of tests to a much more limited number of hypothetical factors 
that a number of tests measure in common. 

FACTOR ANALYSIS AND THE HIGHEST ORDER 
FACTOR 

Spearman (1904, (927) hypothes ized that the positive correlation among . all 
cognitive tests is due to a general factor that is measured by every test. His 
invention of fador analysis permitted estimation of the proportion of the total 
variance in a collection of tests that is attributable to the general factor, g, as well 
as the correlation (termed afactor loading) of each test with the g factor that is 
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common to all of the tests. Variance that is not attributable to the g factor (call it 
the non-g variance), is assignable to (I) other factors, called group factors, 
because they account for the non-g correlations among only certain groups of 
tests, (2) specificity, or that portion of a test's true score (i.e., reliable) variance 
that is not shared in common with any other tests in the collection of tests 
subjected to factor analysis, and (3) error variance. 

Aside from error variance, specificity is the least interesting from a psycho­
logical and psychometric standpoint , because specificity can dwindle as more 
tests of simi lar types are added to the collection; then some of the specific 
variance turns into additional group factors (also termed primary, or first-order, 
factors). 

The general factor, g, is the highest common factor in the correlation matrix, 
accounting for more of the total common factor variance than any other factor, 
and often even more than all of the other factors combined. 

A g factor can be extracted by anyone of three methods in current use . It can 
be represented by (1) the first principal component of a principal components 
analysis, or (2) the first factor of a common factor (or principal factor) analysis, 
or (3) a hierarchical factor analysis, in which all of the first-order factors are 
rotated to an oblique "simple structure" and the correlation among the first­
order factors are then factor analyzed to yield a second-order factor. The g factor, 
the apex of the hierarchy, most typically emerges as the only second-order 
factor, although in large and highly diverse collections of tests, g appears as a 
third-order factor at the apex of the hierarchy. 

It is desirable to "residualize" the factor loadings at each level in the hier­
archy, i.e., the variance that is common to the oblique (i .e., correlated) first­
order factors is partialled out and transferred up to the second-order oblique 
factors, and their common variance also is partialled out and transferred to the 
third-order factor. This procedure orthogonalizes the entire hierarchy ; that is, all 
the factors are uncorrelated with one another, within and between levels of the 
hierarchy. This hierarchical analysis can be accomplished by means of the 
Schmid-Leiman (1957) procedure , which yields the factor loadings of all the 
tests on each of the orthogonal factors at every level of the hierarchy. A schemat­
ic factor hierarchy is shown in Fig. 4.1. 

Is there a preference among these methods of extracting a g factor? Yes, 
although each method has certain advantages and disadvantages . The first prin­
cipal component is the least affected by sampling error, and the hierarchical 
analysis is the most affected, and therefore should be used with samples that are 
very much larger than the number of tests. The first principal component will 
always yield the largest g in terms of its eigenvalue or the proportion of total 
variance accounted for, but this is not a real advantage, because some small part 
of that variance consists of uniqueness (i .e., the specific and error variance), 
which is more or less evenly spread over all the components in a principal 
components analysis. Thus we often find that the various tests' loadings on the 
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General Factor 

Second - Order Factors 

Primary Factors 
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FIG.4.1. Example of a hierarchica l 
factor analys is with three leve ls. 

first principal component, although they are slightly larger overall than the 
corresponding loadings on the first principal factor, are somewhat less clear-cut. 
Despite this, the first principal component and first principal factor are nearly 
always extremely alike . 1 have yet to find a correlation matrix of real tests for 
which the congruence coeffi cient between the first principal component and the 
first principal factor is lower than + 0 .99, which means that for most purposes 
they can be regarded as virtually identical. (This is not true of the subsequent 
unrotated components or factors extracted after the first; the congruence between 
the corresponding components and factors decreases with each successive com­
ponent extracted.) 

The hierarchical g is always smaller than the g represented by either the first 
principal component or first principal factor. This is because the process of 
extracting a hierarchical g (using the Schmid-Leiman orthogonalizatioo transfor­
mation) does not result in any significant negative correlations in the res idual 
matrix after the g factor is removed , so that positive manifold of the res idual 
matrix is preserved when factors are partialled out at every level of the hierarchy , 
and virtually all of the statistically reliable factor loadings are positive on all 
factors. This condition is theoretically desirable in terms of thinking of all abili­
ties as positive vectors and as always faci litating, and never hindering, perfor­
mance on any cognitive task that is at all affected by the ability . (The preserva­
tion of all positive loadings on all factors was originally advocated by Thurstone 
(1938, 1947), as one of the aims of factor rotation to approximate simple 
structure. ) 

In extracting g by principal factor analysis and hierarchical factor analysis 
from the same set of data , I have found that the hierarchical g usually contains 
some 10% to 20% less variance than the g represented by the first principal 
factor. Yet the relative sizes of tests' loadings on the first principal factor and on 
the Schmid-Leiman hierarchical g are usually highly similar, with coefficients of 
congruence of + 0 .99 or greater. When both the first principal factor and the 
hierarchical g are extracted from the intercorrelations (based on the national 
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standardization data) of the 13 subtests of the Wechsler Intelligence Scale for 
Children, for example, the coefficient of congruence between them is +0.999 
(Jensen & Reynolds, 1982). I have compared both types of g factors in many 
collections of tests and have never found the relative magnitudes of the factor 
loadings to differ appreciably. However, an advantage of the hierarchical g is 
that it is less affected by variations in the sampling of tests entering into the 
analysis. For example, if we included a half-dozen or so more different types of 
memory span tests in the Wechsler battery, the first principal factor would be 
pushed somewhat in the direction of the memory factor , that is , its loadings on 
the memory span tests would be enlarged. The hierarchical g, however, would 
remain relatively unaffected by the number of tests of different types in the 
battery. In short , the hierarchical g is more stable than the first principal factor 
across variations in psychometric sampling. 

When the first-order factors are rotated , the first factor loses its status as the 
highest common factor; its variance is scattered among the rotated primary 
factors, and what could properly be called a g factor disappears. The most 
popular rotational criterion is Thurstone's concept of simple structure , which 
aims for a factor pattern that contains no negative loadings and a maximum of 
zero loadings. An idealized simple structure is shown in Table 4.1. (If the factors 
were all orthogonal, there would be no g.) If the rotated factors are forced to be 
orthogonal (i.e., uncorrelated), achievement of a clean simple structure has 
proved to be impossible in the abilities domain . The basic assumption underly ing 
orthogonal simple structure is that test scores are simple in factorial composition. 
Simple structure implies the hope that a number of tests could be devised, each of 
which measures only one abi lity, so-called primary mental abilities. But despite 

TABLE 4. I 
A Rot ated Factor Matrix Showing Factor Loading s 

of an Idea l i zed Simp l e Structure 

Rotated Factors 

Variable A B C D h
2 

1 1 o· 0 0 1 
2 1 0 0 0 1 
3 1 0 0 0 1 
4 0 1 0 0 1 
5 0 1 0 0 1 
6 0 1 0 0 1 
7 0 0 1 0 1 
8 0 0 1 0 1 
9 0 0 0 1 1 

10 0 0 0 1 1 

Eigenvalue 3 3 2 2 

% Variance 30 30 20 20 
2 . 

h = communality 
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concerted efforts, this goal has never been attained . No matter how homoge­
neous each of a number of tests is, or how' 'factor pure" their constructors have 
striven to make them, they are always found to be substantially correlated with 
one another in any sizeable representative sample of the general population. 
When the correlations among such tests are factor analyzed and rotated to 
orthogonal simple structure, which is now most commonly done analytically , 
using Kaiser's (1958) varimax, the desired "simple structure" is never "clean," 
that is, instead of many near-zero factor loadings there are many low but signifi­
cant loadings scattered throughout the matrix, representing the dispersal of the 
general factor throughout all the primary factors. Although varimax or other 
simple structure rotation aids in the identification and interpretation of the group 
factors because of the fairly sharp contrast between large and small factor load­
ings that serves to highlight the various primary factors, it has the disadvantage 
of scattering and submerging the g factor beyond recognition. 

To overcome this problem, Thurstone suggested oblique rotation yielding 
correlated primary factors; this achieves a much closer approximation to simple 
structure. But the g variance then resides in the correlations among the primary 
factors, which, when factor analyzed, yield the g factor at the top of the hier­
archy. Hence, in the abilities domain , it is an incomplete and unacceptable 
practice to stop factor extraction with orthogonal rotation of the primary factors. 
So, too, are oblique primary factors an incomplete analysis, unless one goes on 
to extract g (and any other higher-order factors). To pretend that g does not exist 
because it can be "rotated away" is merely deceptive. The purely mathematical 
argument that any position of the factor axes is as good as any other, is the­
oretically unacceptable. The argument rests simply on the fact that the same 
amount of common factor variance is accounted for regardless of the position to 
which the factor axes are rotated, and any factor structure (given the same 
number of factors) can reproduce the original zero-order correlations among the 
tests equally well. While it is indeed true that an unlimited number of different 
positions of the factor axes is possible, and that all of them are mathematically 
equivalent in reproducing the original correlations, some factor structures make 
much more sense, theoretically, than others. Some possible factor structures may 
even create quite misleading impressions . When we "hide" the g factor in the 
orthogonal simple-structure primary factors, for example, we create the expecta­
tion that some of the mental tests are uncorrelated , when in fact this is contra­
dicted by the all -positive matrix of actual test of intercorrelations. Orthogonal 
simple structure also does not reflect the fact that the average differences between 
individuals on a number of tests are larger than the average differences between 
tests within individuals. The g factor, along with the smaller group factors in a 
hierarchical analysis, best represents all these salient facts far better than any 
orthogonal rotation of multiple first-order factors that dissipates g. 

The g factor of a large and heterogeneous battery of mental ability tests differs 
in one important way from all the other rotated or unrotated factors that can be 
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extracted, besides the fact that g is the single largest factor. The g factor cannot 
easily be characterized, if indeed it can be described at all, in terms of the 
features of the tests on which it has its most salient loadings, while all the 
primary factors can be characterized in terms of test content, such as verbal, 
numerical, spatial, and memory. When such diverse tests as Wechsler Vocabu­
lary and Raven Matrices both have almost equally high g loadings when factor 
analyzed among a battery of diverse tests, psychological interpretations of g are 
difficult and certainly not obvious. The apparent features of the tests and the 
overt behavioral skills evinced by successful performance on the tests afford 
scant clues as to the basis for their high correlations with each other and with g. 
In attempting to characterize g, one is forced to seek a level of generality that 
transcends the "phenotypic" features of particular tests and to invoke theoretical 
concepts involving deeper levels of analysis. In confronting g, we are dealing 
with a highly abstract theoretical construct. 

Factors, including g, are not themselves explanatory constructs . They are 
constructs which themselves require explanation. The g factor, above all , is a 
phenomenon worthy of scientific analysis and explanation. At present, we are 
still not very far ahead of the position noted by Spearman in 1927, when he stated 
that 

This general factor g, like all measurements anywhere, is primarily not any con­
crete thing but only a value or magnitude . Further, that which this magnitude 
measures has not been defined by declaring what it is like, but only by pointing out 
where it can be found. It consists in just that constituent- whatever it may be­
which is common to all the abilities inter-connected by the tetrad equation . This 
way of indicating what g means is just as definite as when one indicates a card by 
staking on the back of it without looking at its face. Such a defining of g by site 
rather than by nature is what was meant originally when its determination was said 
to be only "objective." Eventually, we mayor may not find reason to conclude 
that g measures something that can appropriately be called "intelligence." Such a 
conclusion, however, would still never be a definition of g, but only a "statement 
about it." (pp. 75- 76) 

I believe Spearman was quite correct in tentatively identifying intelligence 
only with g rather than with all of mental ability. There is no theoretical limit to 
the possible number of ability factors, so long as we can go on making slight 
variations in numerous mental tests such that their intercorrelations are less than 
1 when corrected for attenuation. Hence, to equate intelligence with all of mental 
ability would surely render this concept scientifically undefinable and un­
measurable. If we reject this alternative, and g as well, as definitions of intel­
ligence, we are left either with the problem of deciding which other factor should 
be included in our definition or of resorting to pure operationalism, declaring that 
one particular test is the measure of intelligence. 
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FLUID AND CRYSTALLIZED ABILITY 

Cattell (1963, 1971) discovered that, when various tests with contents reflecting 
past learning experiences, cultural acquisition, and scholastic knowledge and 
verbal and numerical ski lls are factor analyzed along with tests involving novel 
problem solving and forms of reasoning based on analogies, series, and matrices 
all consisting of abstract or nonrepresentational figures , there emerges at the 
second level of a hierarchical analysis two factors which Cattell has labeled fluid 
and crystallized G, or Gr and Gc' Fluid ability, Gr, can be described as relation 
eduction, abstraction, and reasoning in novel problems. Crystallized ab ility , Gc ' 

reflects the acquisition of specific and transferrable skills and knowledge made 
available by the individual's culture, education, and experience. The Gr much 
more nearly corresponds to Spearman's concept of g than does Gc ' Since Cat­
tell's hierarchical model does not go beyond the second level, Humphreys (1979) 
has described it as an "incomplete hierarchical model" (p. 108). Because Gr and 
Gc are correlated, and usually highly correlated, in an oblique solution , a sub­
stantial g should emerge as a third-order factor-a g which is essentially the 
same as Spearman's g. The degree of correlation between Gr and Gc seems to be 
related to a number of conditions: 

I. When the persons are of similar cultural background and have had fairly 
equal amounts of school experience, Gr and Gc are highly correlated. In our 
university undergraduates, for example, the correlations between various typical 
tests of fluid and crystallized abilities are just about as high as the correlations 
between tests of the same type. And Raven's Advanced Progressive Matrices, a 
classical marker test for Gr, is more highly loaded (+0 .80) on the overall g factor 
(first principal factor) of the Wechsler Adult Intelligence Scale than are any of 
the WAIS subtests themselves, even though the W AIS is generally viewed as 
being predominantly a test of crystallized abi lities. 

2. A random or representative sample of the general population shows higher 
correlations between G f and Gc tests than samples with a more restricted range of 
ability. 

3. As the collection of tests becomes larger and more varied in contents and 
item types, G f and Gc become less clearly distinguishable. The total unweighted 
composite score on a sufficiently large and broadly representative sample of 
cognitive tasks is almost perfectly correlated with Spearman's g, that is , the 
highest-order g. Although I have not seen a definitive empirical demonstration, 1 
venture the hypothesis that collections of tests that are considered typical mea­
sures of Gc would yield a g that comes increasingly closer to the g of a collection 
of tests that are considered typical measures of Gr as the number and variety of 
Gc-type tests increases. In other words, an increasing amount of Gr can be 
"distilled" out of typical Gc tests as they are sampled more broadly , because the 
only factor common to all the highly varied measures of crystallized abilities will 
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be fluid ability, G f . The fluid aspect of Gc is increasingly siphoned into G f , and 
the crystallized residue recedes into the residualized primary factors, or becomes 
at best merely a minor second-order factor. 

Something very much like this picture is seen in two recent factor analyses of 
large batteries of highly varied psychometric tests selected to represent a number 
of the second-order factors previously identified in factor analyses by other 
investigators and which include G f and Gc ' When a Schmid-Leiman hierarchical 
factor analysis is applied to these data, G f and Gc clearly appear as second-order 
factors. But when the hierarchical analysis is continued to the third level , yield­
ing g, the residualized second-order G f simply disappears; it is completely ab­
sorbed into g. In Gustafsson's (1984) analysis, the correlation between G f and g 
is + 1.00, and Gustafsson concludes that "the second-order factor of fluid intel­
ligence is identical with a third-order g-factor" (p. 179) . In this analysis, much 
of Gc is also "absorbed" by g, the correlation between them being +.76. 
Undheim (1981a, 198ab, 1981c) re-analyzed the correlations among the 20 tests 
of the Horn and Cattell (1966) study which identified Gr, Gc ' and three other 
second-order factors (Gy- spatial visualization, Gr- fluency, and Gs- "speed­
iness " ). But Undheim carried the hierarchical analysis to the third level , yielding 
g. The residualized G f turns out to be very small, accounting for less than half as 
much variance as Gc and less than one fifth as much variance as g. Undheim, 
with Gustafsson, concludes that Cattell's second-order G f is equivalent to g, as 
defined in an orthogonalized hierarchical model- a g referred to by Undheim as 
a neo-Spearmanian g, because it is arrived at by a method of factor analysis quite 
different from Spearman's outmoded tetrad method . And the residualized Gc 
should not really be considered a general factor at all, but a minor second-order 
factor correlated with primary factors arising from tests of verbal , educational, 
and general cultural knowledge. Gc is practically equivalent to a residualized 
V:ed (verbal-educational) factor in Vernon's (1950) hierarchical model. 

SIZE AND INVARIANCE OF 9 

As the first (unrotated) principal factor , g inevitably comprises more variance 
than any other factor that could be extracted from the matrix of test intercorrela­
tions . But how large a percentage of the total variance does g actually account 
for? The answer depends on the number and diversity of the tests and the range of 
ability in the subject sample. To get a rough idea of the size of g, I have 
examined 20 independent correlation matrices comprising a total of more than 70 
tests, such as the Wechsler battery , all the tests used in the Natiomil Longitudinal 
Study, the Kaufman Assessment Battery for Children, the Armed Services Voca­
tional Aptitude Battery, the General Aptitude Test Battery, and other mis­
cellaneous collections of tests . The tests have been administered to large and 
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fairly representative samples of children and adu lts. (As all scores are age­
standardized, the effects of age do not enter into the correlations.) The average 
percentage of variance accounted for by g in the 20 data sets is 42 .7% (with a 
range from 33.4% to 61.4%) . The average percentage of variance attributable to 
all other factors that have eigenvalues greater than 1, and thus can be said to 
constitute other common factors, is 15.3% (with a range from 9.6% to 22.8%)­
call this the non-g common factor variance . The ratio of g variance to non-g 
common factor variance was determined for each of the 20 analyses; the mean 
ratio over the 20 studies is exactly 3: 1; that is , g accounts for three times as much 
variance as the non-g common factor variance. (The g/non-g ratios ranged from 
1.6 to 5.2.) 

Spearman originally believed that g is invariant across different collections of 
tests, but this belief depended on the truth of his two-factor theory, namely, that 
the true-score variance of every test comprises only g variance and specific 
variance. But the overly simple two-factor theory had to be discarded. With the 
acknowledgment of group factors, the invariance of g across different collections 
of tests is no longer logically assured, but is an open empirical question . It is 
certainly true that the particular composition of the test battery will affect its g. A 
collection of tests in which all of them are verbal will yield a g which is some 
amalgam of both general and verbal abi lity and will therefore be a somewhat 
different g from a test composed of both verbal and nonverbal tests in roughly 
equal proportions. The degree of invariance of g is a function of the number, 
diversity, and cognitive complexity of the tests in the collection that is factor 
analyzed . Increasing anyone or a combination of these conditions increases the 
similarity of the g factor extracted in different collections of tests. 

The robustness of g in maintaining its identity when extracted from different 
test batteries, however, actually seems quite impressive. Tests with larger g 
loadings in one battery generally have large g loadings in most other batteries. It 
is a rare finding, for example, when a high-g test such as the Raven Matrices has 
a g loading below the median g in any collection of psychometric tests . When 
this nonverbal test is factor analyzed among just the six verbal subtests of the 
WAIS, for example, the size of its g loading is second only to that of Vocabu­
lary. When the Raven Matrices and all 11 of the WAIS subtests, which includes 
five nonverbal performance tests , are factor analyzed, the Raven has the highest 
g loading among all of the tests. 

Another example of the robustness of g: The g loadings of the 12 scales of the 
Wechsler Intelligence Scale for Children-Revised (WISC-R) were obtained for 
the 1868 white children in the national standardization sample. In an independent 
sample of 86 white children, the same 12 WISC-R subtests were factor analyzed 
along with the 13 subtests of the Kaufman Assessment Battery for Children (K­
ABC), a mental ability test designed with the hope of being quite different from 
the WISC-R. I How simi lar are the WISC-R g loadings across two independent 

II am indebted to Dr. J. A. Nag li eri for providing these data. 
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samples and when the 12 WISC-R subtests are factor analyzed as a 12 x 12 
correlation matrix (the standardization sample) and as part of a 25 x 25 matrix 
including the 13 K-ABC subtests? The average g loadings of the WISC-R sub­
tests in these two conditions are +0.57 and +0.58, respectively, and the rank­
order correlation between the two sets of g loadings is +0.97. In short , the two g 

factors are practically identical, even across different samples and different col­
lections of tests . 

The robustness of g across diverse test batteries was shown long ago in a study 
by Garrett, Bryan, and Perl (1935), who factor analyzed a battery of six varied 
memory tests (meaningful prose, paired-associates, free recall of words, digit 
span, memory for forms, memory for objects) and extracted the g factor. This 
battery of tests then was factor analyzed along with four other diverse tests not 
especially involving memory (motor speed, vocabulary, arithmetic, form board). 
The g loadings of the memory tests in the two analyses were correlated .80. The 
overall correlation between g factor scores based on just the memory tests and g 
factor scores based on just the nonmemory tests was .87. This is evidence that 
the g of the six memory tests is very close to the g of the nonmemory tests. To be 
sure, the memory tests were not as highly loaded on g (average g loading = .42) 
as the vocabulary and arithmetic tests (average g loading = .65), but what little g 
the memory tests have is much the same g as found in the non memory tests. One 
would like to see larger-scale studies of this type based on many diverse psycho­
metric tests, to determine the range of correlations between g factor scores 
extracted from different nonoverlapping sets of tests, controlling for reliability. 
My hunch is that all the g factors would be found to be highly similar. 

We now have considerable evidence that g is highly consistent across differ­
ent racial populations when they share the same language and general cultural 
background . In nine independent studies in which test batteries comprising any­
where from six to thirteen tests were administered to large representative samples 
of black and white Americans and a g factor was extracted separately from the 
correlation matrices in the black and white samples, the coefficients of con­
gruence between the g factors obtained in the black and white samples of the nine 
studies ranged between +0.993 and +0.999, with a mean of +0.996. Such 
congruence coefficients indicate virtual identity of the g factor in the black and 
white populations (Jensen, 1985) . (From the same data, the mean group dif­
ference in g is estimated at about 1. 2 IT, where IT is the average within-group 
standard deviation.) 

PRACTICAL EXTERNAL VALIDITY OF 9 

The practical predictive validity of intelligence and aptitude tests is mainly 
dependent on g. This has been so frequently demonstrated with respect to the 
prediction of scholastic achievement as to not bear further reiteration. Other 
factors, such as verbal and numerical factors, may enhance prediction of perfor-
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FIG. 4.2 . Frequency distribution of 537 validity coeffic ients of the General 
Aptitude Test Battery for 446 different occupations. G score is general inte l­
ligence; multifactor validity is based on an optimally weighted composite of nine 
GATB aptitudes (including G) for each job category . The median validities are 
+ 0 .27 for G and + 0 .36 for the multi factor composite . 

mance in school and college and in the various armed forces training programs , 
because the predicted criterion is factorially complex, but the increases in the 
validity coefficient that result from adding other factors after g in the prediction 
equation are surprisingly small . The same is true for the prediction of occupa­
tional performance , although a clerical speed and accuracy factor and a spatial ­
visualization factor contribute significantly to the predictive validity for certain 
occupations . The g factor has predictive validity for job performance in nearly all 
jobs , and the validity of g increases with job complexity. I have found that the 
average predictive validities of each of the GATB aptitude tests, for 300 occupa­
tions, are substantially correlated (+ .65) with the g loadings of these aptitude 
tests (Jensen, 1984) . The frequency distribution of 537 GATB validity coeffi­
cients for predicting performance in 446 different jobs is shown in Fig . 4.2 . The 
G score validity is a simple r, whereas the multifactor validity is a multiple R, 
which by its nature can never be less than zero and is always biased upwards. 
Hence , the small average difference between the two sets of validity coefficients 
is noteworthy . It seems very likely that no other mental ability factor or combina­
tion of factors, independent of g, has as many educationally , occupationally , and 
socially significant correlates as g. 

THE "REALITY" OF 9 

We are frequently warned of the danger of reifying g, but it is never made very 
clear just what this might mean. Is there a danger of reifying the physicist' s 
concept of energy, which is also an abstract theoretical construct? One and the 
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same energy is assumed to be manifested in various forms, such as "kinetic," 
"chemical," and "potential" energy. Is the physicist guilty of reification when 
the concept of gravitation enters into his explanation of certain physical events? 
For nearly a century the gene was a hypothetical construct; quantitative genetics 
and population genetics were developed entirely in terms of this construct. 

Factor analysts and intelligence theorists have always viewed g as a the­
oretical construct. The status of factors as theoretical constructs has been so 
thoroughly discussed by Burt (1940) in the chapter on "The Metaphysical Status 
of Factors" in his famous book The Factors of the Mind as to leave hardly 
anything more that could reasonably be said on this topic . Anyone who feels 
inclined to argue about this matter, I would insist, should first study Burt's 
masterful chapter. If it is thought that there is really anything left to argue about 
concerning the legitimacy of g as a bona fide theoretical construct, we should not 
be deprived of this enlightenment, explicated, one would hope, with the same 
philosophic thoroughness and scientific erudition that characterize Burt's 
chapter. 

Recognition of g as a hypothetical construct is not to say that g represents 
nothing more than a mathematical artifact or a fiction entirely created by the 
algebraic operations of factor analysis applied to an arbitrary collection of tests. 
If this were proven true, g would indeed be of little scientific interest. The g 
factor gains interest to the extent that it is found to be significantly related to 
variables outside the realm of psychometric tests, from which the g construct 
originated. It has already been noted that a g factor dependably appears as a 
major hypothetical source of individual differences when we factor analyze any 
collection of diverse cognitive tasks on which a person's performance must meet 
some objectively quantifiable standard and on which task difficulty is not a 
function of sensory or motor skills, that is, the easy and hard tasks do not make 
different demands on sensorimotor abilities per se. And the g factors extracted 
from different collections of diverse cognitive tasks are much more highly corre­
lated with one another than are the tasks themselves, or than are a simple 
unweighted sum of the scores on the tasks in each collection. Even though g is 
not absolutely invariant, the considerable congruence of the g factors extracted 
even from quite dissimilar collections of tests is consistent with the interpretation 
of the observed variability in g as a form of measurement error due to psycho­
metric sampling. Variability in g arises from the fact that tests differ in their g 
loadings relative to other non-g factors, and most collections of tests that are 
submitted to factor analysis are quite limited in size. Hence there is psychometric 
sampling error in the g measured by any particular limited collection of tests. The 
resulting variability of g merely attenuates its potential correlation with external 
variables that might enhance its interest as a theoretical construct. In spite of such 
sampling variability, g is found to be related to a number of theoretically impor­
tant variables which themselves have no connection whatsoever with psycho­
metrics or factor analysis. Psychometric tests were never devised with the ex­
press purpose of predicting these variables. Here are some noteworthy examples. 
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Heritability ofWAIS Subtests . A simple method for inferring whether there 
is a statistically significant proportion of genetic variance in a metric trait is 
Fisher's variance ratio , F, based on the within-pair variances obtained in groups 
of monozygotic (MZ) and dizygotic (DZ) twins; that is , F = Sa.,DZ/ Sa.,MZ' The 
rationale for this ratio is that the difference between the members of a pair of DZ 
twins (who have, on average, only about half of their segregating genes in 
common) is attributable to both genetic and environmental factors , while the 
difference between members of a pair of MZ twins (who have identical gen­
otypes) can be attributable only to nongenetic factors. For the genetic traits, 
therefore, the within-pair variance of DZ twins is necessarily greater than that of 
MZ twins; the F ratio reflects this difference between DZ and MZ twins, and can 
be used as a statistical test of its significance. An F not greater than I is 
interpreted theoretically as indicating the absence of genetic variance in the trait 
in question , and the more that F exceeds 1, the larger is the contribution of 
genetic factors to the total variance in the trait. (The precise value of F > 1 
required for statistical significance , of course, depends on the level of signifi­
cance, a, and the degrees of freedom of the numerator and denominator of the 
variance ratio.) 

There are two independent studies in which the 11 subtests of the Wechsler 
Adult Intelligence Scale (W AIS) were given to samples of MZ and DZ twins and 
the F ratios were determined for each of the WAIS subtests (Block, 1968; 
Tambs, Sundet, & Magnus , 1984). (The study by Block had 60 pairs each of MZ 
and DZ twins; Tambs et al. had 40 pairs each of MZ and DZ twins .) The F ratios 
in the two studies range from I. 36 to 4.51 , with a mean of 2.26; 18 out of the 22 
F ratios are significant beyond the 5% level. In each study I have calculated the 
rank-order correlation between the profile of F ratios on the 11 W AIS subtests 
with the profile of g loadings of the subtests obtained from the W AIS standardi­
zation sample for ages 19 to 24 years . Thus the F ratios and g loadings are based 
on independent samples . The rank-order correlation between the profiles of F 
ratios and g loadings is + .62 (p < .05) for the Block data and + .55 (p < .05) for 
the Tambs et al. data . These correlations should be compared with the rank 
correlation of + .62 between the profiles of F ratios obtained in the two studies . 
If that correlation can be regarded as an estimate of the reliability of the F 
profiles , the correlation between the F and g profiles corrected for attenuation 
becomes + .79 and +.70, respectively . (It should be noted that test reliability 
itself does not enter into the F ratios, since measurement error contributes the 
same proportion of error variance to the within-pair differences for MZ and DZ 
twins alike, and the proportionality factor cancels out in the F ratio, i.e., 
Sa.,DZ/ Sa.,MZ·) In brief, these studies show that there is a relationship between the 
size of g loadings of the W AIS subtests and the degree to which the subtests 
reflect genetic variance. 

Family Correlations. Nagoshi and Johnson (1966) correlated the g loadings 
of 15 highly varied cognitive tests with the degree to which the tests are corre-
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lated between different pairs of family members in a large sample (927 families) 
of Americans of European ancestry. The correlations of the 15 tests' profile of g 
loadings with the profile of family correlations (disattenuated) on each of the 15 
tests are as follows: 

Between spouses 
Father-son 
Mother-son 
Father-daughter 
Mother-daughter 
Brother-brother 
Sister-sister 
Brother-sister 

+.90 , P < .001 
+.55 , P < .05 
+.69, P < .01 
+.59, P < .05 
+.76, P < .001 
+.33 
+.42 
+ .26 

Nagoshi and Johnson note that the heritability of g (to the extent that heritability 
can be assessed through family correlations) appears to be higher than that of 
non-g, possibly because of greater assortative mating for g than for non-g; e 
appears to have greater influence on educational and occupational attainment 
than does non-g . 

Inbreeding Depression . If the genetic factors (alleles) that enhance the phe­
notypic expression of a trait are dominant, the effect of inbreeding is to lower the 
mean of the trait in the inbred group relative to the mean of a non inbred but 
otherwise comparable population- a phenomenon known as "inbreeding de­
pression." The effect depends on the presence of genetic dominance, and the 
presence of dominance indicates that the trait has undergone directional selection 
in the course of its evolution. Hence the presence of inbreeding depression, 
signifying dominance, in the case of psychometric tests of ability suggests that 
variance on such tests reflects in part a trait of biological relevance as a fitness 
character for which there has been positive selection in the course of human 
evolution. 

There are now at least 12 independent studies that have reported the genet­
ically predictable effects of inbreeding on mental test scores (reviewed by 
Jensen, 1983; Agrawal, Sinha, & Jensen , 1984). The effect of inbreeding de­
pression on the IQs of the children of first-cousins, as compared with children of 
unrelated parents, is about one third of a standard deviation for the Wechsler IQ 
(Jensen , 1983) and about one half of a standard deviation on the Raven Matrices, 
a more purely g-Ioaded test (Agrawal et aI. , 1984). 

The degree of inbreeding depression on the various subtests of the Wechsler 
Intelligence Scale for Children (WISC) is directly related to the subtests' g 
loadings . The rank-order correlation between the profile of the index of inbreed­
ing depression on 11. WISC subtests and the profile of the subtests' g loadings is 
about +0.8 (Jensen , 1983). Varimax rotated factor loadings show markedly 
smaller correlations with the index of inbreeding depression than do the g factor 
loadings. These results are consistent with the hypothesis that psychometric g 
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reflects to some extent a biological aspect of intelligence that acts as a fitness 
character which has been subjected to natural selection in the course of human 
evolution. 

Speed of Mental Processing . A variety of reaction time (RT) tasks , or 
elementary cognitive tasks (ECT) , have been found to be correlated with psycho­
metric tests of intelligence and scholastic achievement (Carlson & Jensen, 1982; 
Carlson, Jensen, & Widaman, 1983; Carroll, 1980; Cohn, Carlson, & Jensen , 
1985; Jensen , 1982a, 1982b; Jensen & Munro, 1979; Vernon, 1983 ; Vernon & 
Jensen , 1984). Not only are subjects' median RTs (measured over a number of 
trials) correlated with psychometric tests, but intraindividual variability (mea­
sured as the standard deviation of the subject's RTs over a number of trials) 
shows comparable correlations. The correlation of RT and ECTs with psycho­
metric tests of ability seems to depend mostly, perhaps even entirely, on g. The 
remarkable thing about these simple tasks designed to measure speed of mental 
processing is that the tasks usually involve nothing that would ordinarily be 
regarded as intellectual content. The tasks are so simple and the error rates are so 
low that individual differences in performance usually cannot be reliably scored 
in terms of the number of right or wrong responses . RTs measured in millisec­
onds, however, when averaged over a number of test trials for each subject, yield 
measures with satisfactory reliability . The easiness of the tasks is suggested by 
median RTs that are generally less than one second. 

With a sample of university students, Vernon (1983) used scores on the 
eleven subtests of the W AIS in a multiple regression to predict a composite RT 
score created by summing subjects' median reaction times and intraindividual 
variability after these were converted to z scores. The shrunken multiple R was 
substantial (.44) , even in this restricted university sample (Full Scale IQ = 122, 
SD = 8) . However, the correlation of only the g factor of the W AIS is - .41; that 
is, all the non-g variance in the 11 W AIS subtests increases the multiple R by 
only .03. The profile of g loadings of each of the WAIS subtests shows a rank­
order correlation of -.73 with the profile of each of the subtests' correlations 
with the composite RT score, but this correlation is attenuated in this university 
sample which has a restricted range on g. as the lowest Full Scale IQ of any 
subject in the study was at the 75th percentile of the W AIS standardization 
sample. (The data for this analysis were provided by P. A. Vernon.) 

A similar effect is seen in a study by Hemmelgarn and Kehle (1984), who 
used a RT apparatus like that described by Jensen and Munro (1979), in which 
the subject's RT to either 1, 2,4, or 8 light-button alternatives is measured. (See 
Appendix for a description of this paradigm.) In this arrangement, RT is an 
increasing linear function of the number of bits of information in the stimulus 
array (i.e ., bit = log2n. where n is the number of light-button alternatives), an 
effect known as Hick's law. The slope of this function is regarded as a measure 
(inverse) of the speed of information processing, in milliseconds per bit. Hem-
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melgarn and Kehle correlated individual differences in the RT slope measure 
with scores on each of the 12 subtests of the WISC-R in a group of 59 elementary 
school pupils. (Chronological age was partialled out.) The profile of 12 correla­
tions showed a rank-order correlation of - .83 (p < .01) with the profile of the 
subtests' g loadings. That is, the degree to which a WISC-R subtest is correlated 
with a RT index of information processing speed is related to the size of its g 
loading. The overall correlation between RT slope and Full Scale IQ was only 
- .32, but a larger correlation would hardly be expected, considering the gener­
ally low test-retest reliability of the slope measure. RT measures, and particu­
larly the slope, are quite sensitive to physiological state, which fluctuates for 
individuals from day to day . 

Evoked Cortical Potentials. Various parameters of the electrical potentials 
of the cerebral cortex evoked by visual or auditory stimuli have been found to be 
correlated with IQ. Haier, Robinson, Braden, and Williams (1983) conclude: 

Perhaps, the most startling conclusion suggested by this body of work is not just 
that there is a relationship between brain potentials and intelligence, but that the 
relationship is quite strong. This supports the proposition that the variance of 
intelligence, with all its complex manifestations, may result primarily from rela­
tively simple differences in fundamental properties of central brain processes. (p. 
598) 

Eysenck and Barrett (1985) derived a measure from the average evoked 
potential (AEP) that reflects the complexity of the waveform as indicated by the 
contour perimeter of the AEP wave in a given time-locked epoch. Higher IQ is 
associated with greater complexity of the AEP waveform; correlations in excess 
of + .60 have been found between IQ and AEP. Eysenck and Barrett factor 
analyzed the correlations among the II subscales of the W AIS obtained on 219 
subjects on whom there were also obtained a composite measure of AEP com­
plexity, which subtracts the complexity measure from the variability of the AEP, 
as variability is negatively correlated with IQ. When the composite AEP measure 
was included in the factor analysis along with the II W AIS subtests, the AEP 
had a loading of + .77 on the g factor. Moreover, the profile of g loadings of the 
WAIS subtests showed a rank-order correlation of +.95 (p < .01) with the 
profile of correlations of each of the W AIS subtests with the AEP. (When all the 
correlations in each profile were corrected for attenuation, the rank-order correla­
tion dropped to + .93 [p < .0 I].) In short , the g factor of the W AIS is shown to 
be highly reflected in an electrophysiological measurement of cortical activity in 
response to simple stimuli (auditory "clicks") that cannot be regarded as cog­
nitive or intellectual by any conventional definition of these terms. 

Following a lead from Eysenck, Schafer (1985) independently has discovered 
a highly similar effect based on the AEP. In a sample of 52 adults of average or 
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superior intelligence (WAIS Full Scale IQs of 98 to 142), Schafer measured the 
amplitudes of AEPs to two blocks each of 25 stimuli (auditory clicks). The 
percentage difference between the averages of the first and second blocks was a 
measure of EP habituation. (Subjects show a decrease in EP amplitude over 
repeated trials.) This measure of EP habituation correlated + .59 (p < .01) with 
WAIS Full Scale IQ. (When corrected for the restricted range of IQ in this 
sample, the correlation is +.73.) A range-corrected multiple R of .80 was ob­
tained when another index derived from the AEP was used along with the 
habituation measure. Schafer correlated the profile of WAIS subtest loadings on 
the first principal component in his sample with the profile of correlations be­
tween each of the subtests and the EP habituation index ; the rank-order correla­
tion is +.91. When the same analysis is done using the first principal factor 
(instead of the first principal component) to represent the g of the W AIS , the 
results are as shown in Fig. 4 .3. The rank-order correlation is +.77 (p < .01). 
The g loadings of the WAIS subtests in Schafer's sample show a congruence 
coefficient of +.98 with the loadings of the same subtests in the W AIS national 
standardization sample and therefore can be regarded as representing the same g. 

The idea that g is really no more than merely an artifact peculiar solely to 
conventional psychometric tests and the mathematical manipulations of factor 
analysis applied to the intercorrelations among tests is utterly inconsistent with 
these findings showing that the g factor , rather than other components of vari­
ance in psychometric tests , is the most highly correlated with such variables 

~ 0.60 , "0 

~ y= - O. IO+O.80x 
oS o PA 

g 0.50 r=O.80 

-; p=O.77 
oC oV 

::l oSD 
or 

."':: 0.40 

.0 OAo oA 0 
:r: 
0.. 0 .30 
w 
.c oPC 
j 0.20 

oCod 
c 
0 

<; 0.10 

e:' 
30.00 

oD 

0 .00 0. 10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 
g Fa clor Loading 

FIG. 4.3. Correlation of the habituation index of the evoked potential (EP) with 
Wechsler Adult Intelligence Scale (W AIS) subtests plotted as a function of the 
subtests' g loadings (i.e. , first principal factor) in Schafer's study. W AIS subtests: 
I- Information , 2- Comprehension , 3- Arithmetic, 4- Simi larities, 5- Digit 
Span, 6- Vocabulary, 7- Digit Symbol, 8- Picture Completion , 9- Block De­
sign, IO- Picture Arrangement, II - Object Assembly. 
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outside the realm of psychometrics as heritability, inbreeding depression, reac­
tion times in elementary cognitive tasks , and certain parameters of cortical 
evoked potentials . The alotted space does not permit a proper summary and 
evaluation of a number of other physical correlates of g. such as stature, brain 
size, myopia , blood types, and body chemistry. (l am presently preparing a 
detailed critical review of all the evidence on the physical correlates of g.) 

The evidence reviewed here also seems to contradict the notion expressed by a 
modern factor analyst, Undheim (l981c), who, in criticizing the Spearman and 
Cattell interpretation of g as a "free-floating capacity" states that" ... there is 
no difference between intelligence and intellectual achievements. There is no 
measure of 'capacity ,' only different measures of achievement" (p. 257). It is 
hard to understand in what sense g-cOiTelated reaction times and evoked poten­
tials can be described as "achievements" by any generally accepted meaning of 
that word. 

One can make various statements about g while not fully understanding its 
nature. In light of our present understanding, it would seem safe to say that g 
reflects some property or processes of the human brain that is manifested in many 
forms of adaptive behavior, and in which people differ, and that increases from 
birth to maturity , and declines in old age, and shows physiological as well as 
psychological or behavioral correlates, and has a hereditary component, and has 
been subject to natural selection as a fitness character in the course of human 
evolution, and has important educational , occupational, economic, and social 
correlates in all industrialized societies. The behavioral correlates of g bear a 
close resemblance to popular or commonsense notions of intelligence . But 
whether the word " intelligence" is attached to g is unimportant, scientifically. 
An advantage of pursuing g is that we have a specified set of operations on a 
specified class of empirical data that dependably yields a phenomenon that we 
can study in generally the same analytic manner that science approaches any 
other natural phenomenon . 

REFINING 9 

The notion that g comes about because test constructors intentionally make up 
tests so that they will all be positively correlated with one another, and that they 
discard all tests (or test items) that are not positively correlated with all the rest, 
is simply false . In fact, psychometricians have often striven to devise mental 
tests that would not be correlated with one another. Thurstone (1935) , for exam­
ple , devoted years to trying to produce a number of tests that would yield 
uncorrelated measures of what he then regarded as independent factors of ability , 
termed primary mental abilities (PMA). No amount of psychometric refinement 
of the various PMA tests could eliminate their substantial intercorrelations, and, 
in a review of Thurstone's work, Eysenck (1939) factor analyzed all of the 
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Thurstone tests and found that a large g factor could be extracted from their 
intercorrelations. All but a very few of the tests had larger factor loadings on g 
than on the particular primary mental ability factors that they were specially 
devised to measure as purely as possible . 

However, it can be argued that a correlation between two tests is not neces­
sari ly evidence that the tests measure an abi lity that is common to both, except in 
a trivial sense. That is, the common factor implied by a correlation need not be 
anything we could legitimately regard as an abi lity or a cognitive process. Com­
mon factors can arise from different causes, some more profound or intrinsic 
than others . If psychometric g could be shown to be the result of some relatively 
superficial common factor , it would drastically change the complexion of g 
theory . Factor analysis per se makes no assumptions about the causes of correla­
tion and is totally indifferent to the fact that two variables may covary without 
sharing any common process. It could be hypothesized, for example , that g 
merely reflects cultural differences that affect a broad spectrum of cognitive 
skills acquisition, or nutritional differences that affect motivation and perfor­
mance of all kinds. To illustrate the point in the simplest way, I can make up an 
analogies test on which all of my relatives will obtain much higher scores than 
can be obtained by any other group of people on earth . The analogies would 
consist entirely of items like this: 

Linda is to Lydia as Leo is to: Art, Bob, Eddie, Lou. All of the names in such 
items are of relatives who are related as spouses, siblings, parent-child, cousins, 
etc . If such a test, based on the names of my relatives , were given to all my 
relatives and to all of yours, there would be plenty of variance, very high item 
intercorrelations, and a big g factor. This g, however, would have arisen entirely 
from the between families component of the correlations, and the g would dimin­
ish drastically, or even disappear entirely , if the correlations were obtained 
within families. 

The methodology for obtaining between-family and within-family correlations 
among tests and for contrasting the factors extracted from the two types of 
correlation matrices is a way of assessing the relative proportions of wheat and 
chaff that we have in our g factor and in the g loadings of any given variab le in 
the analysis. (The same can also be said in regards to any other factors.) I have 
explicated th is methodology elsewhere (Jensen, 1980). 

Does the existence of g depend on those sources of test score variance that 
differ between families , such as cultural and social class influences on intellec­
tual development? If so , a g factor should show up only in a between-families 
factor analysis; the g of a within-families analysis should be negligible, or at least 
quite different. Cultural and social class sources of variance exist only between 
fami lies. By far the larger part of what most psychologists and sociologists mean 
by "environment," when they speak of environmental differences that affect 
performance on IQ tests, refers to the between-families aspect of environmental 
variance. Siblings reared within the same fami ly share the same cultural and 
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social class influences. By factor analyzing correlations among tests between and 
within families, we can determine the degree to which the extracted factors are a 
function of between-families variance . If a factor is essentially the same both 
between and within families, it can be said to reflect a more intrinsic or basic 
source of individual differences than if it exists only between families. 

Between-families (BF) and within-families (WF) correlations require a sam­
ple of N families, each with two or more full siblings, to each of whom are 
administered two or more tests on which scores are age-standardized. A BF 
correlation between tests X and Y, for example, is obtained by correlating the N 
family means of each set of siblings on text X with the corresponding means on 
test Y. A WF correlation is obtained by correlating the signed difference between 
siblings on test X with their difference on test Y . The WF correlation, therefore, 
can reflect none of the BF variance. When BF and WF correlations are obtained 
on a number of different tests , we can extract a g from each correlation matrix 
and compare the BF and WF g factors by means of the coefficient of congruence, 
an index of factor similarity on a scale from 0 to ± I. 

So far we have no really ideal study of this type in terms of a sufficiently 
broad sample of tests . But three independent large sets of sibling data that I have 
analyzed give such consistent results as to suggest that other collections of 
cognitive ability tests would probably lead to the same conclusion. In one study 
(Jensen, 1980), children in 1,495 white families and 90 I black families in grades 
2 to 6 were given seven tests: memory , figure copying, pictorial IQ, nonverbal 
reasoning (figure analogies , matrices) , verbal IQ, vocabulary, and reading com­
prehension . Only the two siblings most similar in age in each family were used. 
BF and WF intercorrelations of the tests were factor analyzed separately for 
black and white samples. The coefficients of congruence between the BF g and 
the WF g were + .985 and + .987 for the black and white samples, respectively . 
In other words , the g factors extracted from the BF and WF correlations are 
practically identical in this collection of tests, for both black and white children. 
(The average congruence coefficient between the black and white g factors is 
+ .991.) 

In an independent study, being prepared for publication , four of Thurstone's 
Primary Mental Ability tests (Verbal , Numerical , Spatial, and Reasoning) and 
Cattell's Test of g (from Cattell's 16 P.F. battery) were obtained on 313 siblings 
in 135 white families. The coefficient of congruence between the BF g and WF g 
is +.98. 

It has been hypothesized that the intercorrelation of otherwise uncorrelated 
abilities, thereby giving rise to g, comes about as a result of cross-assortative 
mating for various abilities (Price, 1936) . If each of two abilities is influenced by 
entirely separate sets of genes, and if both abilities are socially perceived as 
desirable , there will tend to be cross-assortative mating for the abilities. That is , 
not only will like attract like for either ability alone, but the separate abilities will 
be perceived with some degree of equivalence in terms of desirability , and there 
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will be a marital correlation between the two abilities. This common assortment 
of the genes that affect two traits results in a genetic correlation between the traits 
in the offspring-but it is only a between-families genetic correlation. Because 
the separate genes segregate in the process of gametogenesis and each offspring 
of a given pair of parents receives a random half of each parent 's genes, there 
will be no within-family genetic correlation between the traits that are genetically 
correlated in the population. 

Hence a test of the hypothesis that g arises from genetic correlations due to 
cross-assortative mating for otherwise genetically independent abilities consists 
of a comparison of the BF and WF correlations between measures of different 
abilities. 

The correlation of about +.2 between height and IQ appears to be this type of 
adventitious genetic correlation due to cross-assortative mating for stature and 
intelligence. Although the population correlation between height and IQ is a 
quite reliable phenomenon, no correlation has been found within families. Gifted 
chi ldren, for example, are taller than their nongifted age peers in the population, 
but they are not taller than their nongifted siblings. 

A within-family genetic correlation between traits is usually attributab le to 
pleiotropy, that is, the same gene affects two or more phenotypically distinct 
traits. 

So far there have been too few studies of the genetic basis of correlated traits 
to permit any compelling conclusions. The results of the two BF and WF factor 
analyses previously mentioned, however, suggest that the correlations between 
abilities are probably not explainable in terms of cross-assortative mating for 
different abilities. But a satisfactory answer must await more detailed and sys­
tematic BF and WF correlational studies that are specifically designed to answer 
this question . The outcome of studies based on WF factor analys is has extremely 
important implications not only for the theory of g, but for the structural repre­
sentation of all the abilities identified by factor analysis. The same method can be 
applied to chronometric measurements of processing components. 

If there is any hope at all for identifying independent or uncorrelated elemen­
tary cognitive processes , it will be realized in the study of WF correlations. The 
study of abilities, throughout most of its history , has shown an obsession with 
independence. Many theorists have pursued it , hoping to discover components of 
abi lity that are truly independent in a more real sense than part of the uncorre­
lated residual variance of two (or more) ability tests after their common factor is 
partialled out. The desire for real components that are uncorrelated has been the 
philosopher's stone of psychometrics; it seems to be a philosophic position, not 
one dictated by scientific necessity . Since psychologists have not succeeded in 
devising psychometric tests that are uncorrelated, the search for this presumably 
desirable condition has moved on to the measurement of elementary cognitive 
processes . By measuring smaller and smaller components of performance on 
cognitive tasks, presumably, correlations between them, and hence g, will van-
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ish. But it might well turn out that positive correlations between any measurable 
components of ability will vanish only at the point where correlation becomes 
impossible, that is, where there is no true variance in one (or both) of the 
correlated components . Just where in a reductionist analysis that point will be 
found we cannot say at present , but it is not impossible that variance and 
intercorrelations could be found all the way down to the level of neural structure 
and biochemical activity , just short of the molecules, or even atoms, that com­
pose the brain . The well established substantial heritability of individual dif­
ferences in g indicates that there is some biological substrate of individual dif­
ference in g, presumably in the neural structure and physiology of the cerebral 
cortex. 

TASK COMPLEXITY AND g 

Probably the most undisputed fact about g is that the g loadings of cognitive tasks 
are an increasing monotonic function of the perceived complexity of the tasks. 
Subjective judgments of task complexity are a fairly accurate predictor of the 
rank order of the tasks' g loadings . In general, g loadings decrease monotonically 
for tasks class ified as relational , associative, perceptual, and sensorimotor. An 
especially clear demonstration of this is a factor analytic study by Maxwell 
(1972) , who regards the relationship between g and task complexity as highly 
consistent with Thomson 's (1948) sampling theory of g, which pos its overlap­
ping neural elements or bonds sampled by different tests. More complex tests 
presumably sample a larger proportion of the total available elements and there­
fore would have a greater amount of overlap than relatively simple tasks. But 
Spearman 's theory of g as a general mental energy that is available for any 
cognitive task is equally consistent with Maxwell 's results. Successful perfor­
mance on the more complex tasks simply requires more mental energy. Spear­
man characterized g as "the eduction of relations and correlates" on the basis of 
his finding that tests involving relation eduction consistently had the largest g 
loadings of any of the many types of tests that he included in his factor analyses . 

The fact that much simpler tasks than those involving relation eduction , even 
tasks that do not require any kind of reasoning at all , are also g loaded, albeit to a 
lesser degree, indicates that Spearman's own characterization of g is much too 
limited. 

The apparent failure of the Galton and Cattell attempts to measure intelligence 
with quite simple " brass instrument" laboratory tests, such as various types of 
sensory discrimination and reaction time, and Binet' s success, using much more 
complex tasks, led to the strongly entrenched belief among psychologists that 
complex tasks are an essential condition for the measurement of intelligence. Yet 
if intelligence tests are distinguished by very high g loadings, it is then also true 
that they differ from the much simpler tasks of the Galton-Cattell variety only in 
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degree, for tests' g loadings vary in a perfectly continuous manner, ranging from 
values close to 1.00 on down to near O. 

A high level of task complexity, therefore, appears to be a sufficient but not 
necessary condition for the emergence of g. Some significant, positive, nonzero 
g loading is evident even in simple sensory discrimination tasks and simple 
reaction time (RT). As these simple tasks are made slightly more complex, their 
g loadings increase. Choice RT is more g loaded than simple RT, dual sensory 
discrimination tasks are more g loaded than single discrimination, and backward 
digit span is more g loaded than forward digit span. Various elementary cog­
nitive tasks (ECTs) can be rank ordered in degree of complexity on the basis of 
the mean response latencies in performing the tasks. The rank order is highly 
correlated with the rank order of the tasks' correlations with psychometric g 
derived from unspeeded complex tests of reasoning and general knowledge. The 
ECTs here referred to are so simple that their mean response latencies are less 
than 1.5 seconds for average adults. Yet even these simple tasks are g loaded , 
and the loadings increase with task complexity as indexed by mean latency. 
Figure 4.4 shows the correlation of each of eight very simple ECTs with g factor 
scores derived from the ten subtests of the Armed Services Vocational Aptitude 
Battery (ASVAB). (The tasks are described in Jensen, 1985, p . 209.) 

It will be noticed in Fig. 4.4 that the correlations of the single ECTs with the 
ASV AB g scores are all quite low, ranging from less than +.10 to about +.35. 
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FIG. 4.4. Correlation of ECTs with ASVAB g factor scores as a function of task 
complexity as indexed by mean response latency (RT in msec.) on each task in a 
vocational college sample (N = 106) . The dual tasks (#3, 4, 6, 7) are shown as 
circled dots and are connected to their single-task counterparts (#2 , 5, 8) by 
straight lines. The tasks are described in the Appendix. (The numbers beside the 
data points indicate the specific processing tasks: I- RT, 2- DIGIT , 3- DT2 
Digits, 4- DT3 Digits, 5- SD2, 6- DT2 Words , 7- DT3 Words, 8- SA2.) 
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The shrunken multiple R between all eight of the ECTs and the ASV AB g, 
however, is .47 , which can be compared with the average of the correlations 
among the ten ASVAB subtests: f = +.36, SD = .19 . 

Findings such as this raise the interesting question of whether all of the g 
variance derived from very complex psychometric tests of reasoning, problem 
solving, and the like, can possibly be predicted by a composite score on a 
sufficient number of elementary cognitive tasks, none of which involves more 
than a very simple level of complexity. Another way of asking the same ques­
tion: Is there nothing in g that depends upon the higher mental processes, or the 
so-called metaprocesses? 

This is one of the key questions in this field , and it has not yet been adequately 
investigated . It is not enough to use just a few simple tasks, however reliable the 
scores may be made by repeated measurements. By simple tasks I mean ECTs 
that provide chronometric data such as choice RT in the Hick paradigm, speed of 
scanning short-term memory in the S. Sternberg paradigm, and speed of access 
to overlearned verbal codes in long-term memory as in the Posner paradigm. (I 
have described these paradigms elsewhere [Jensen, 1982a] .) Each such task is 
much like a very homogeneous psychometric test in which all the items are of the 
same type. Most such homogeneous tests have a great deal of specificity (i. e., 
task-specific variance) and consequently not much g or other common-factor 
variance. Yet these ECTs are positively correlated with one another, and each is 
also correlated with the g factor of psychometric tests. But these single-task 
correlations are generally quite low, mostly falling between .3 and .4 in unre­
stricted samples, and even with proper corrections for attenuation, the upper 
limit of correlation is not greater than .50. A composite score derived from 
several different ECTs, however, can show larger correlations with psychometric 
g, because the total vari ance of a composite reflects the covariances among the 
components more than the variances that are specific to each component, and the 
covariances contain the g of the ECTs, some part of which is the same as the g of 
psychometric tests. It seems a likely poss ibility that if response latencies on as 
many as a dozen or so simple but distinctly different chronometric ECT para­
digms were optimally combined , the composite score would correlate about as 
highly with psychometric g as do , say, the Raven Matrices, or Cattell's Culture­
Fair Test of g, or the Wechsler, or the Stanford-Binet. Yet none of the ECTs 
entering into the composite score would involve anything that would ordinarily 
be regarded as intellectual content or as requiring reasoning or problem solving 
in the generally accepted sense of these terms. 

Although correlations of the magnitudes being found between single ECTs 
and single psychometric tests may seem rather small , they should not be cause 
for despair. Remember that chronometric ECTs have virtually no method vari­
ance in common with unspeeded psychometric tests. It is instructive to compare 
the typical .3 to .4 correlations between ECTs and psychometric tests with the 
correlations between various psychometric tests in terms of each of their com-
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TABLE 4.2 
Components of Correlationsa Among Subtests of the WISC-R Derived from Factor Loadings in a Schmid - Leiman 

Orthogonal Hierarchical Factor Analysis, with g Correlations Below the Diagonal, and Correlations 
Based on the Group Factors (Verbal, Memory, and Performance) Above the Diagonal 

WISC- R Subtest I S V C A DS TS Cod PC PA BD OA M 

Information 

~ 
16 

Similarities 45 17 13 ~ verbal 

Vocabulary 48 

~ 
memory 

Comprehension 40 40 43 ----------Arithmetic 38 38 41 34 16 14 08 

Digit span 29 29 32 26 

Tapping span 23 23 25 21 20 15 performance 

Coding 25 25 27 22 21 16 ---------------Picture completion 34 34 37 31 29 22 18 15 15 09 

Picture arrangement 33 33 35 29 28 21 17 18 12 07 

Block design 43 43 47 39 37 29 23 24 33 22 14 

Object assembly 33 33 36 30 29 22 17 19 25 25 14 

Mazes 25 25 27 22 21 16 13 14 19 18 24 

a Decimals omitted. 
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mon factors. Table 4.2 shows the factor-generated correlations among the 
WISC-R subtests in the white standardization sample, representing the full range 
of ability in the white population . Below the diagonal are the correlations due to 
the g factor , in a Schmid-Leiman hierarchical analysis. Above the diagonal are 
the correlations among tests due to the group factors, Verbal, Memory, and 
Performance, orthogonal to g and to one another. (Correlations not significantly 
greater than zero at the .05 level, with N = 1868, are not included.) If ECTs are 
correlated on ly with the g factor of psychometric tests, we should expect the 
correlations to fall in the same ballpark as the correlations among psychometric 
tests that are due entirely to g. Such correlations, shown below the diagonal in 
Table 4.2, range from + . 13 to +.48, with a mean of +.28. 

Experimental Manipulation of Complexity . The g loadings of tests may be 
related to their complexity because responses to test items are scored as pass or 
fai l (i.e., "right" or "wrong") and individuals ' scores are determined by the 
threshold on the continuum of item difficu lty at which the information processing 
system is inadequate to the task. The efficiency or capacity of the processing 
system may be revealed most clearly when the system is pushed or strained. 
Individual differences in the threshold of breakdown of the system may provide 
the most efficient measure of g 

The processing difficulty of an item can be measured in terms of percent 
failing the item, if it is difficu lt enough to allow failure , or in terms of mean 
response latency when the item is easy enough for subjects to pass it. This 
hypothesis was tested in an extreme fashion by one of my graduate students 
(Paul, 1984). The Semantic Verification Test (SVT) consists of 14 item types, or 
conditions, each presented six times with different permutations of the three 
letters ABC. The 14 conditions are shown in Table 4.3. Following each item is 

TABLE 4.3 
The Fourteen Conditions of the Semantic 

SVT 
Variable 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 

Ve rification Test 

semantic 
Condition 

before 
- not before 
-after 
-not after 
-first 
-not first 
- last -
- --'not last 
-between -& 
-not between-& 
- before & ~ -
-not before-& 
-after & - -
-not afur- & 
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some permutation of ABC which either agrees ("true") with the preceding 
statement or disagrees with it ("false") . The subject responds True or False to 
each item. When the SVT is given as a chronometric task to university students, 
the correlation between their median RTs and scores on the untimed Advanced 
Raven Matrices test is about - .50. Considering the great simplicity and lack of 
intellectual content of the SVT, and the restricted range of abi lity in the univer­
sity group, this is a remarkably high correlation. A high level test of verbal 
knowledge and reasoning, Terman's Concept Mastery Test , is correlated about 
+ .50 with the Advanced Raven Matrices in the university population, and WAIS 
Vocabulary, the most highly g loaded of the 12 W AIS subtests, is correlated only 
+.44 with the Raven. 

The SVT was given as an untimed paper-and-pencil test to 77 third-grade 
pupils to determine the percent failing each item. The SVT test was also given as 
a chronometric task to 50 university students. The mean median RTs to the 14 
conditions of the SVT ranged from about 650 msec to 1200 msec, and the overall 
error rate was 7%. The task was obviously of trivial difficulty for university 
students. The interesting point, however, is that the difficulty levels (percent 
failure) of the 14 conditions for the third graders shows a rank-order correlation 
of + .79 (disattenuated = + .83) with the mean median RTs of the 14 SVT 
conditions in the university sample. In university students taking the SVT as a 
chronometric test, the correlation of mean error rates on the 14 SVT conditions 
with the corresponding mean median RTs was + .82. Twenty-five university 
students were also asked to rank the 14 SVT conditions in the order of their 
complexity, according to the students' subjective judgments of complexity. The 
average correlation between subjects' rankings was +.80 and the reliability of 
the composite rank order of the 25 complexity rankings was +.99. This judged 
complexity of each of the 14 SVT conditions was correlated + .86 with the 
difficulty levels of the l4 conditions in the third graders and + .82 with the mean 
median RTs of the university sample. Hence there is a close relationship between 
judged item complexity, item difficulty (measured as percent failing), and item 
processing times. 

These SVT RT data, however , present a seeming paradox with respect to 
psychometric g as measured by the Advanced Raven Matrices. Although the 
correlations between Raven scores and the median RTs of the 14 SVT conditions 
range between - .30 and - .50, the degree of correlation is inversely related to 
task complexity as indicated by median RT or judged complexity. The correla­
tion between tasks ' median RT and their correlation with the Raven is - .67, that 
is , the less complex SVT conditions show the higher correlation with Raven 
scores. Another paradox: although the positive SVT conditions (e.g. , A before 
B) are less complex and have RTs that average 210 msec less than the negative 
SVT conditions (e.g., A not before B), the mean correlation of the RT for 
positive SVT items with the Raven is - .42, as compared with - .39 for the 
negative items (disattenuated, these are -.45 and - .43 , respectively). And 
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when the RTs of the 14 SVT items are factor analyzed, the positive items have 
the higher mean loading on the first principal factor ( .91 vs .. 88; disattenu­
ated, .99 vs . . 96) . It had been hypothesized that the negative condition would 
necessitate an extra mental manipulation in the processing to produce a correct 
response and that this increased complexity would increase the item' s g and its 
correlation with the Raven. Although the negative items are clearly judged as 
being more complex and have longer RTs (by 210 msec , on average), they are 
not more highly correlated with a marker test of psychometric g. It is surprising 
and puzzling. We plan to repeat the study to see if this paradoxical result is 
replicated. 

Another experimental manipulation of complexity is by means of comparing 
RTs to single and dual tasks. If tasks A and B are performed separately in such a 
way that performance on one does not affect performance on the other, they are 
termed single tasks . If they are presented simultaneously or in close temporal 
proximity in such a way that performance on either A or B is significantly 
affected by their proximity , then the task on which performance is measured 
(usually chronometrically) is termed a dual task . (Dual tasks are also referred to 
as competing tasks .) The effect of dual tasks is commonly interpreted as dividing 
attention and straining processing capacity. The effect of this generally is to 
increase the g loading of the dual task relative to its g loading as a single task. In 
a dichotic li stening task , for example, the subject simultaneously hears a differ­
ent pattern of three notes in each ear (e.g., left ear: high , low, high; right ear: 
low, high, low) and is then randomly postcued to report the pattern presented to 
one ear. Using such paradigms, Stankov (1983 ; also see Fogarty & Stankov, 
1982) discovered that performances are more highly intercorrelated and therefore 
more g loaded when presented as dual than as single tasks. Dual tasks were also 
more highly correlated with subjects' educational level than their single-task 
counterparts. In the most thorough study of a wide variety of dual tasks that I 
have come across in the literature, Fogarty (1984) found that dual tasks have 
higher g loadings than their single-task counterparts only when the latter have 
relatively low g loadings. Tasks that have high g loadings when presented as 
single tasks, however , have somewhat lower g loadings when they are presented 
as a dual task. Presumably , when a task is already high g as a single task, mak ing 
it a dual task strains processing capacity to the point of breakdown , which lowers 
the reliability of the performance by increasing the rate of chance successes and 
consequently attenuates the task 's g loading. Fogarty's factor analysis of single 
and dual tasks also suggests, although not very strongly, that dual tasks are 
factoria lly more complex than the single component tasks and that dual tasks 
may involve cognitive processes that are not operative in single tasks. But the 
evidence for this is weak and ambiguous, and in a study explicitly addressed to 
this question , Lansman, Poltrock, and Hunt (1983) found no ev idence for any 
distinct abi lities to divide or focus attention. 

The importance of the relationship between single vs. dual tasks and g is that 
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the increase in g loading must be purely a process phenomenon arising from the 
greater strain placed on cognitive capacity by dual tasks. There is no increase in 
the informational content of the dual task. 

In our own lab we have worked with four single and dual tasks (Jensen , 1985; 
Vernon, 1983; Vernon & Jensen, 1984). Our various ECTs, in which perfor­
mance is always measured in terms of median RT, are described in the Appendix 
(taken from Jensen, 1985, p. 209) . Returning to Fig. 4.4, which shows the 
relationship between task complexity (as indicated by the mean latency, or RT, 
on the task) and the task's correlation with the g factor scores derived from the 
Armed Services Vocational Aptitude Battery (ASVAB) in a sample of 106 
vocational college students, we see that the correlation between these variables is 
quite large, r = -.98, p = -.93. It appears anomalous, however, that one of the 
four dual tasks (#6) has a slightly lesser correlation with g than its single-task 
counterpart. These correlations are so similar, however , that this reversal might 
be due to sampling or measurement error. Another way of looking at this rela­
tionship is in terms of mean differences in median RTs between two groups that 
differ in general ability, or g. The mean differences between two contrasting 
groups should be less attenuated by measurement error. Figure 4 .5 shows the 
correlation between the complexity of the processing tasks, as indicated by their 
mean latency (RT), and the mean difference between vocational college students 
and university students; both groups are normal youths of comparable age, and 
both groups are of above-average intelligence, although they differ about one 
standard deviation in psychometric g. As seen in Fig. 4.5, there is a high 
correlation (r = +.97, P = +.98) between task complexity and the degree to 
which the tests discriminate between the vocational and university groups. Also, 
in every case, the dual tasks show greater discrimination than their single-task 
counterparts. These data are highly consistent with the hypothesis that dual tasks, 
or task competition, increases g loading. 
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FIG . 4 .5 . Mean d ifference (in 
msec.) between vocationa l college 
students (N = 106) and university 
students (N = 100) on various e le­
mentary cognitive tasks as a function 
of task complexity as indicated by 
mean response latency (RT) on each 
of the tasks in the vocati ona l co llege 
group. The same task , when present­
ed as part of a dual task, is shown as 
a circled dot connected to its s ingle­
task counterpart by a straight line. 
Note that in every case, the dual tasks 
are more di scriminating between the 
vocational and univers ity groups than 
the single tasks. T he tasks are the 
same as those in Fig. 4.4. 
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THEORIES OF g 

Ever since Galton originally propounded the notion of intelligence as a general 
ability which could be channelled into any kind of intellectual activity, and Binet 
advanced the idea of intelligence as the average level of a number of different 
abilities and skills, various theories of intelligence, and of g, have been classifia­
ble into two broad categories: unitary theories and multiple theories. The same 
divisions might also be labeled power theories and sampling theories, respec­
tively. This division of theoretical conceptions has continued down to the present 
day. One of the major challenges to the field at present is to achieve a satisfactory 
theoretical resolution and consensus on the problem of the unitary or multiple 
nature of g based on empirical evidence. The answer may depend on the level of 
analysis we choose for our study of cognitive abilities. In formulating laws of 
mechanics, matter can be regarded as unitary-the solid, seeable, touchable, 
solid objects in our surroundings. For most of the laws of chemistry, matter is 
seen as multiple at the level of mixtures, compounds, and molecules, but as 
unitary at the level of atoms. In subatomic physics, atoms are no longer unitary 
but are seen as composed of multiple particles- protons, neutrons, etc. , which 
are also analyzable into more elemental components, the quarks , and there is still 
no assurance that even the quarks are the ultimate units of matter that defy further 
analysis. 

Unitary Theories of g 

Spearman's "Mental Energy". Spearman suggested that g is a "mental 
energy" of which there is a limited amount for each individual and in which 
individuals differ. The brain's "energy" can be directed to any kind of mental 
activity executed by different "neural machines ." Individual differences in the 
"machines" show up as group factors and, along with their complex interac­
tions, as specificity. The overall positive correlations among these activities is all 
being powered by the same general energy, in which individuals differ. To quote 
Spearman's (1923/1973) own most succinct and explicit statement of this theory: 
'The brain may be regarded (pending further information) as able to switch the 
bulk of its energy from anyone group to any other group of neurons; as before, 
accordingly, the amount and the direction of the disposable energy regulate 
respectively the intensity and the quality of the ensuing mental process" (p . 
346). Elsewhere he elaborates: "In this manner, successful action would always 
depend, partly on the potential energy developed in the whole cortex, and partly 
on the efficiency of the specific group of neurons involved. The relative influ­
ences of these two factors could vary greatly according to the kind of operation; 
some kinds would depend more on the potential of the energy, others more on the 
efficiency of the engine" (1923/1973, p. 6). 

I have used the word "energy" in quotes in this context, because it is not 
always clear whether Spearman endows the term with the meaning it has in the 
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physical sciences, which is its only scientifically legitimate meaning, or whether 
he intends it merely as an analogy or metaphor. If g is equated with energy in the 
accepted physical sense of the term, then , as Thomson (1948, p. 58) pointed out, 
Spearman's theory can be rejected in its literal form, because the brain (or the 
cerebral cortex) does not act as a reservoir of free-floating energy that can be 
consolidated and shifted around from one group of neurons to another. Whatever 
energy exists in the brain resides within the individual nerve cells as an elec­
trochemical reaction propogated along the neural membrane. If, on the other 
hand, Spearman's use of "energy" is merely metaphorical, it contributes little, 
if anything, to the scientific understanding of g. It merely underscores Spear­
man's belief in the unitary nature of the cause of g but does not suggest what this 
unitary cause is in empirically testable terms. Spearman's "mental energy" 
theory of g has always been regarded metaphorically by most psychologists , and 
consequently has not been taken very seriously. As metaphor, it has been pecu­
liarly unfruitful in generating empirical investigation, and today Spearman's 
"energy" theory has only the status of an historical relic . 

Burt's Neurophysiological Theory. Burt (1940, p. 217; 1961) proposed a 
unitary theory of g that is not metaphoric, but anatomical and physiological. He 
held that g reflects the general character of the individual's brain tissue, such as 
the degree of systematic complexity and organization in the neural architecture, 
and he cites histological evidence that the cerebral cortex of some mentally 
deficient persons shows less density and branching of neurons than is seen in the 
brains of normal persons . To account for the ubiquity of g, Burt hypothesizes 
that the general quality of an individual 's cerebral cortex is more or less homoge­
neous throughout; hence every intellectual function would reflect this homoge­
neous quality of the nervous system. As with Spearman's theory, specialized 
areas or neural structures, in addition to particular classes of acquired knowledge 
and skills, give rise to group factors and specificity. Burt's theory , being non­
metaphoric , has the virtue of being testable, at least in principle, but I am not 
aware that, so far, there have been any systematic histological investigations of 
individual differences in the brain's architectonics in relation to psychometric g 
among normal persons. There is little that psychologists as such can do to 
confirm or substantiate Burt's theory, and so it has attracted little attention. 

Motivation or Drive Theories of g. A number of Spearman's contempo­
raries, such as Maxwell Garnett, suggested that g results from individual dif­
ferences in will , motivation , or drive level, which affects performance on all 
cognitive tasks (see Spearman, 1927, pp. 88-89). Essentially the same notion 
has been recently revived by Macphail (1985), who equates g with Hull' s D (for 
drive). This theory runs into difficulty on at least three grounds. 

First, no independent evidence has been brought forth to show that high-g 
persons are more highly motivated in test-taking situations than low-g persons. 
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Differences in range and intensity of intellectual interests are more likely a result 
than a cause of di fferences in g. 

Second , a theory of gas D runs into trouble with the Yerkes-Dodson law , the 
empirical generalization that the optimal drive level for error-free or efficient 
performance of a task is lower for simple than for complex tasks. Yet cognitively 
complex tasks are generally more g loaded than simple tasks, and high- and 
low-g individuals differ more on complex than on simple tasks. We should 
predict just the opposite if g were equated with D . (No one has yet proposed an 
inverse equation of g with D .) 

Third, there is direct empirical evidence showing that higher levels of ability 
in a cognitive task are not associated with higher motivation or arousal during 
task performance, as measured independently by pupillary dil ation , a sensitive 
indicator of motivational arousal and effort. Ahern and Beatty (1979) measured 
the degree of pupillary dil ation as an indicator of effort and autonomic arousal 
when subjects are presented with test problems. They found that (l) pupillary 
dilation is directly related to level of problem difficulty (as indexed both by the 
objective complexity of the problem and the percentage of subjects giving the 
correct answer) , and (2) subjects with higher psychometrically measured intel­
ligence show less pupillary dil ation to problems at any given level of di fficulty. 
(All subjects were university students .) Ahern and Beatty concluded: 

These results help to clarify the biological bas is of psychometrically-defined intel­
ligence. They suggest that more intelligent individuals do not solve a tractable 
cognitive problem by bringing increased activation, " mental energy" or " mental 
effort" to bear. On the contrary, these individuals show less task- induced activa­
tion in solving a problem of a given level of di fficulty . This suggests that indi­
viduals differing in intelligence must also differ in the effi ciency of those brain 
processes which mediate the particular cognitive task. (p . 1292) 

Speed of Processing and Neuronal Errors in Transmission as the Basis of 
g. Unitary theories of g necessarily hypothesize individual differences in some 
extremely bas ic attribute that plausibly could affect every kind of cognitive 
performance. Galton originally hypothesized mental speed , and proposed using 
RT to visual and auditory stimuli as a measure of general ability. 

Galton 's own efforts and those of his leading American disciple , James 
McKeen Cattell , were notably unsuccessful in establishing any substantial rela­
tionship between RT and independent criteria of intellectual ability , and the 
pursuit of intellectual correlates of RT was virtually abandoned for more than 
half a century. 

In the past decade, however, with the development of relatively sophisticated 
chronometric techniques in experimental cognitive psychology (e .g . , Posner, 
1978), this line of research has been vigorously pursued by many investigators. 
As a result , many different g- Ioaded psychometric tests have been found to show 
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significant correlations with RT measurements derived from a considerable vari­
ety of cognitive tasks ranging in complexity from simple RT (response to the 
onset of a single stimulus) to response latencies in verbal and figural analogies. I 
have reviewed the research on many of these RT tasks and their relationship to 
psychometric g elsewhere (Jensen, 1982a, 1982b). 

Correlations between RTs measured in different paradigms are highly 
positive, indicating a large general speed factor that loads in a wide variety of 
ECTs. This general speed factor is correlated with the psychometric g derived 
from nonspeeded traditional tests of intelligence, both verbal and nonverbal. 

The correlation between psychometric g and speed on ECTs increases with 
the complexity of the ECT only up to a point; beyond it the correlation dimin­
ishes with increasing task complexity. The reason is probably that the more 
complex tasks invite different strategies for attaining the prefelTed response and 
these tend to confound individual differences in sheer speed of mental processing 
with individual differences in choice of strategy. In the great variety of psycho­
metric test items, on the other hand, strategy effects become relegated to speci­
ficity or narrow group factors, and the g factor reflects the more fundamental 
attribute of mental speed. Hence psychometric g is more highly correlated with 
relatively simple ECTs that do not invite a variety of solution strategies . 

Not only speed is correlated with g, but also the consistency of RTs to the 
same task over repeated trials. We measure intraindividual variability in RT in 
terms of the standard deviation of RT over n trials, signified as (ii' This measure 
is often more highly correlated (negatively) with psychometric g than is the 
median RT, despite the usually higher reliability of the median RT . 

Mean differences in these parameters between criterion groups selected from 
different regions of the IQ distribution have shown more consistent and clear-cut 
results than correlations between these parameters and psychometric test scores 
within groups. The reason for this seems to be that correlations are always 
attenuated by unreliability of measurement and restriction of the range of ability, 
whereas a mean group difference is little affected by these factors. Differences 
between clearly separated criterion groups are more capable than correlations of 
detecting the more subtle effects in various RT paradigms. 

One of our recent studies (Cohn, Carlson, & Jensen, 1985) illustrates the 
contrasts in mental speed between academically gifted and nongifted youths 
(ages 12 to 14 years) on a variety of ECTs (described in the Appendix) ranging in 
complexity from simple and choice RTs, to S. Sternberg's short-term memory 
scan for digits, to discriminating physically same vs. different word pairs, and 
discriminating simple synonyms vs. antonyms. All but the simple and choice RT 
tasks were presented both as single and as dual tasks (DT) . The gifted (G) group 
(N = 60), with an average age of 13.5 years, consisted of manifestly talented 
youths whose scores on the SAT were on a par with university students five to six 
years older. The G subjects were enrolled in university courses, competing 
successfu lly in a predominantly math and science curriculum. The nongifted 
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(NG) group consisted of 70 white junior high school students averaging about 1 
SD above statewide norms on the California Test of Basic Abilities. The G and 
NG groups differed 1.9 SD on the Raven Standard Progressive Matrices. For 
both the G and NG groups, the chronometric tasks were of trivial difficulty, with 
mean response latencies never as long as 2 seconds, even in the NG group. 

Figure 4.6 shows the mean latencies on the eight mental processing tasks for 
the G and NG groups and a group of 50 U.c., Berkeley undergraduates (Un). 
The rank-order correlations between the shapes of the profiles are all +.98 or 
above. Groups G and NG differ significantly (p < .01 to .00 1) on all of the 
tasks, but G and Un show no significant differences. (G and Un differ only a 
nonsignificant 2 points on the Raven Matrices.) The within-group multiple cor­
relation of the eight processing tasks with Raven Matrices is .60 and .50 for 
groups G and NG, respectively. 

Most remarkable is the difference between the G and NG groups on the Hick 
paradigm, since it has the least intellectual content of any of the tasks, requiring 
only that the subject release a pushbutton when a light goes on among an array of 
either I , 2, 4, or 8 lights (corresponding to 0 , I , 2, and 3 bits of information) . 
Figure 4.7 shows the results. The groups differ beyond the .00 1 level at every 
level of task complexity from 0 to 3 bits, for both RT and MT (the interval 
between releasing the home button and pressing the button adjacent to the light). 
Also, the slopes of RT for the G and NG groups differ by .70 SDs, which is 
highly significant (p < .00 I) , and intraindividual variability in RT differs signif­
icantly at every level of bits . 

Such findings show that psychometric g can be measured by means of tests 
that have little or no knowledge content and that require no complex problem­
solving strategies. In these respects, they are very unlike ordinary IQ tests, yet 
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FIG. 4.6. Mean latency of various processing tasks in three groups: university 
students (Un), gifted (Gl.. and nongifted (NG) . 
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they are clearly correlated with IQ and discriminate between groups that differ in 
terms of generally accepted criteria of intelligence. These findings also suggest 
that the processes underlying g may be essentially simpler than their manifesta­
tions in complex problem solving and other "real-life" behavior, just as the 
cause of a disease may be simpler than its multifarious symptoms. 

The speed factor that we are measuring with these tasks should not be thought 
of as intentional, overt speed at the level of gross behavior. It is not the kind of 
speed that suggests hurrying and rushing through the performance of a task. 
Speed can be thought of in two senses: cognitive and conative. Cognitive speed 
is speed of information processing . Conative speed is speed due to conscious 
effort, minimizing rest pauses , and the like. Conative speed as it affects perfor­
mance on psychometric tests cannot begin to explain the correlation between RT 
and test scores. Complete abandonment of this overly simple and superficial 
explanation is long overdue. In our own work, we have taken pains to minimize 
the speed factor in test taking. All psychometric tests are given without time 
limit; subjects are urged to take their time and to attempt every item. We have 
also found that when tests were given with a time limit and scored and then 
subjects were given as much additional time as they felt they needed to earn a 
maximal score, subjects remained in approximately the same rank order under 
both methods of scoring, so that the correlation of the scores with another 
variable would be scarcely affected whether the test was timed or untimed. Also, 
we have found that speeded tests show no higher correlations with RT tasks than 
untimed tests. Clerical checking tests, which are the most dependent on speed, 
have the lowest g loadings and the poorest correlations with RT measures. For 
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example, the Coding test, the most speed-dependent test of the ten tests in the 
ASV AB battery, has the lowest g loading in this battery and the lowest correla­
tion with the general speed factor extracted from a battery of eight R T tests 
(Vernon & Jensen , 1984) . The same thing is true of the speeded Coding (or Digit 
Symbol) subtest of the WAIS (Vernon, 1983) . The clincher is that we have found 
a correlation close to zero between individual differences in total test-taking time 
(under untimed conditions) and total scores on the test. 

How then can we explain the correlation between RTs in ECTs and psycho­
metric g? 

Several well-established concepts and principles of cognitive psychology pro­
vide a rationale for the importance of a time element in mental efficiency. The 
first such concept is that the conscious brain acts as a one-channel or limited­
capacity information-processing system. It can deal simultaneously with only a 
very limited amount of information; the limited capacity also restricts the number 
of operations that can be performed simultaneously on the information that enters 
the system from external stimuli or from retrieval of information stored in short­
term or long-term memory (STM or LTM). Speediness of mental operations is 
advantageous in that more operations per unit of time can be executed without 
overloading the system. Second, there is rapid decay of stimulus traces and 
information, so that there is an advantage to speediness of any operations that 
must be performed on the information while it is still available. Third, to com­
pensate for limited capacity and rapid decay of incoming information, the indi­
vidual resorts to rehearsal and storage of the information into intermediate or 
long-term memory, which has relatively unlimited capacity. But the process of 
storing information in L TM itself takes time and therefore uses up channel space, 
so there is a "trade-off" between the storage and the processing of incoming 
information . The more complex the information and the operations required on 
it, the more time that is necessary, and consequently the greater the advantage of 
speediness in all the elemental processes involved. Loss of information due to 
overload interference and decay of traces that were inadequately encoded or 
rehearsed for storage or retrieval from L TM results in "breakdown" and failure 
to grasp all the essential relationships among the elements of a complex problem 
needed for its solution. Speediness of information processing should therefore be 
increasingly related to success in dealing with cognitive tasks to the extent that 
their information load strains the individual's limited channel capacity . The most 
discriminating test items would thus be those that " threaten" the information­
processing system at the threshold of "breakdown." In a series of items of 
graded complexity, this "breakdown" would occur at different points for vari ­
ous individuals. If individual differences in the speed of the elemental compo­
nents of information processing could be measured in tasks that are so simple as 
to rule out "breakdown" failure , as in the various RT paradigms we have used, 
it should be possible to predict individual differences in the point of " break­
down" for more complex tasks. This is the likely basis for the observed correla-
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tions between RT variables measured in relatively simple tasks and total scores 
on complex g-Ioaded tests. 

The speed of elemental information processing may not be the most basic 
source of individual differences in intelligence but may be only a secondary 
phenomenon, derived from a still more basic source of individual differences-a 
hypothetical construct I have termed "neural oscillation," which would account 
for individual differences in intertrial variation in RT as well as in individual 
differences in RT averaged over a given number of trials (Jensen, 1982a, pp . 6-
10). Eysenck (1982a) also regards differences in mental speed and RT as deriva­
tive , in the sense that a person's average RT is not directly attributable to the 
speed of neural conduction or synaptic transmission. He hypothesizes that speed 
differences arise from individual differences in the rate at which errors occur in 
the transmission of neural impulses in the cortex. The stimulus message must 
persist until the "pulse train" of neural impulses exceeds a certain fidelity 
threshold . The more random "noise" or error tendency in the neural system, the 
more time this takes, and hence speed of reaction is a derivative phenomenon. 

So far, there has been no way empirically to decide between the hypotheses of 
processing speed and errors, or "noise," in the neural transmission of errors as 
basic to g. Whether these concepts will be able to account for all or only some 
fraction of the true-score variance in the g derived from a large and diverse 
sample of psychometric tests has yet to be determined. It will be necessary, first 
of all, to determine how large a correlation with g can be obtained from a battery 
of various simple chronometric tasks of sufficient number and diversity to mini­
mize the proportion of task-specific variance in the composite score. The best 
composite correlations we have obtained thus far would account for at most only 
about half of the variance in g. 

Multiprocess Theories 

Thomson' s Sampling Theory of g. E. L. Thorndike (1927) was the first 
systematic proponent of the theory that g is explainable in terms of the hypothesis 
that human abilities consist of independent multiple bonds or neural connections 
acquired through experience, and that successful performance on various tests 
enlists somewhat different but overlapping "samples" of all the myriad bonds 
that constitute ability. Thorndike believed that individuals differ innately in the 
potential number of bonds they can acquire, the total number being limited by the 
number and degree of branching of the neural elements. As this theory proposes 
no inherent structure or organization of the bonds themselves, Spearman (1927, 
Ch. V) termed all theories of this type "anarchic." 

Sir Godfrey Thomson, who spent a year's postdoctoral followship working 
with Thorndike, developed Thorndike 's bond-sampling theory further, formaliz­
ing it mathematically in his now famous book The Factorial Analysis of Human 
Ability (1948, Ch. XX) . Essentially, he showed that the correlation between two 
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tests, X and Y, could be represented as r xy = (PxPy) 112, where p is the proportion 
of the total pool of elements or "bonds of the mind" "sampled" by a given test. 
From this formulation, Thomson was able to demonstrate mathematically how 
both g and specificity could come out of the factor analysis of a number of tests 
that call upon different but overlapping samples of elements. Thomson's sam­
pling theory, as it has come to be known , is illustrated in Fig. 4.8 . It can be seen 
that in this model the factors yielded by factor analysis do not represent anything 
in the mind, which consists only of innumerable disparate bonds or elements of 
some kind. The organization or structure represented by factors is seen as an 
artifact of the tests, which can be devised to sample large or small numbers of 
elements. Complex tests would sample more elements than simple tests, and 
complex tests would therefore be apt to be more highly correlated with other 
tests , and consequently would be more g loaded . To simulate the typical results 
of Spearman's factor analyses, the sampling model only requires, in Thomson's 
(1948) words, 

that it be possible to take our tests with equal ease from any part of the causal 
background; that there be no linkages among the bonds which will disturb the 
random frequency of the yarious possible combinations; in other words, that there 
be no "faculties " in the mind .... The sampling theory assumes that each ability 
is composed of some but not all of the bonds, and that abi lities can differ very 
markedly in their " richness," some needing very many " bonds," some only a 
few. (p. 324). 

Thomson left the number and nature of the hypothetical bonds , or elements, 
of the sampling theory completely unspecified . This deficiency is the core of the 
theory'S weakness in terms of its testability as empirical science. It can be proved 
mathematically that any number of composite aggregates of whatever degree of 
correlation with each other can always be expressed as functions of elements that 
are themselves uncorrelated (Spearman, 1927 , p. 59). Despite its superficial 
plausibility, Thomson's sampling theory does not qualify as a scientific theory . 
Although it has enjoyed much greater uncritical popularity in recent years than 

FIG. 4.8. Illustration of Thomson's 
sampling theory of abilities, in which 
the small circles represent e lements 
or bonds and the large circles repre­
sent tests that sample different sets of 
elements (labeled A, B, and C). Cor­
relation between tests is due to the 
number of elements sampled in com­
mon , represented by the areas of 
overlap. 
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Spearman's theory of " mental energy," it has been no more fruitful in advanc­
ing empirical research on the nature of g or intelligence. Loevinger's (1951) 
verdict seems inescapable: 

The sampling theory hardly qualifies as a true theory, for it does not make any 
assertion to which evidence is relevant. Perhaps the large number of adherents to 
this view is due to the fact that no one has offered evidence against it. But until the 
view is defined more sharply , one cannot even conceive of the possibility of 
contrary evidence, nor, for that matter , confirmatory evidence . A statement about 
the human mind which can be neither supported nor refuted by any facts , known or 
conceivable , is certainly useless . Bridgman and other philosophers of science 
would probably declare the sampling theory to be meaningless. (pp. 594- 95) 

Along with Spearman's theory of "mental energy," Thomson's rival sampling 
theory can be consigned to the museum of psychology's past history , but unlike 
phlogiston, without ever having enjoyed the scientific virtue of being empirically 
disproved. 

Modern descendants of the sampling theory are scarcely more definite as to 
the number and nature of the sampled elements. A number of modern theorists 
conceive of intelligence, or g, as the entire repertoire of an individual's knowl­
edge, skills, and problem-solving strategies available at a given point in time 
(e.g., Humphreys, 1984; Tyler, 1976, pp. 24- 25; Undheim, 198Ic) . In the same 
key, the g factor has also been attributed to individual differences in the number 
of well-learned cognitive skills that generalize across a broad spectrum of prob­
lem-solving situations. 

All theories of this type run into difficulty with the empirical finding that a 
relatively small variety of tests, which can in no way be construed as a represen­
tative sample of the entire repertoire of knowledge, ski lls, and strategies, are 
capable of measuring g. One obviously does not require a sample of the entire 
repertoire of knowledge, ski lls, and strategies to measure g. A few relatively 
content-free tests of the "fluid g" variety are even more g loaded than are tests 
that aim to sample individuals' entire cognitive repertoire. It is also hard to see 
how these theories can accommodate the substantial correlations between RT 
measures derived from quite simple ECTs and psychometric g. What repertoire 
is sampled by these ECTs, most of which seem entirely too elementary to be 
described in terms of "knowledge, skill s, and strategies"? If most of the g 
variance could be predicted by chronometric measures on a number of ECTs, or 
by a physiological measure such as the evoked potential, which involves no 
conscious behavioral aspects at all , these neo-Thomsonian sampling theories 
(perhaps better termed "repertoire" theories) would be empirically falsified in 
terms of any of their meaningful implications. 

Component Process Theories oj g. Process theories of g are essentially 
sampling theories , but with an important difference from Thomson's bond-sam­
pling theory and from theories that identify g with the entire repertoire of knowl-
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edge, ski lls, and strategies. The essential difference is that process theories posit 
some limited number of basic information-processing components, each of 
which can be described in terms of the particular functions it performs-func­
tions that , when viewed in isolation , are usually too elemental to be thought of as 
skills or strategies at the level of overt behavior. An information-processing 
component is itself a hypothetical construct, defined as a process that operates on 
sensory inputs or internal representations of objects or symbols. These elemen­
tary cognitive processes have been described by terms such as stimulus ap­
prehension, sensory encoding, iconic memory , short-term memory (STM) , 
memory scanning, retrieval of information from long-term memory (LTM), 
transformation of encoded information , transfer, discrimination, generalization , 
eduction and mapping of relations, visualization and mental rotation of fi gures in 
2- or 3-dimensional space, and response execution . A less elemental class of 
operations are metaprocesses, which are acquired strategies for selecting, com­
bining and using the elementary processes, problem recognition, rule applica­
tion , planning, organization of information , time allocation, and monitoring of 
one's own performance. 

Processing theory explains psychometric g in terms of a small number of 
components or metacomponents that are required for performance in an ex­
tremely broad variety of tests. Individual differences in the presence or absence 
or efficiency of operation of these general or common components and metacom­
ponents are what account for the positive intercorrelations among practically all 
complex mental tests and the consequent emergence of g when all the intercor­
relations are factor analyzed . The interpretation of g in terms of componential 
theory has been quite thoroughly explicated by Sternberg and Gardner (1982). 

Figure 4 .9 depicts the hypothesized relationship between the processing vari­
ables and psychometric variables . The horizontal dashed line in Fig. 4.9 sepa­
rates the behaviorally measurable or inferred psychological variables (above the 
line) from those that are measurable only physiologically, such as evoked brain 
potentials, or inferred physiological processes, such as cortical conductivity 
(Klein & Krech, 1952), synaptic errors (Hendrickson, 1982), neural osci llation 
(Jensen, 1982a), and the like. The physiological level is represented as one 
general factor, gB (8 for " biological"), although, given our present state of 
knowledge, th is level could just as well be represented as several distinct physio­
logical processes or as correlated processes, due to their sharing one common 
process , i.e ., gB' The nature of this physiologic underpinning of human abilities 
is a major focus of Eysenck's (l982b) theorizing about the findings of correla­
tions between features of the average evoked potential and psychometric g, or 
gpo which is depicted in the hexagon at the top of the hierarchy in Fig. 4.9. All of 
the solid lines in the figure represent correlations. (Correlations could also be 
shown between elements at every level and every other level of the hierarchy , but 
these have been omitted for the sake of graphic simplicity .) 

The various elementary cognitive processes (P) are correlated through their 
sharing of common physiological processes. Different parts of the brain or di ffer-
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FIG. 4.9. Simplified representation 
of hypothesized relationships among 
process ing components and psycho­
metric variables: g,,- psychometric 
g, F- group factor , T- test, MP­
metaprocesses , P- elementary cog­
nitive process, gB- a general biolog­
ic substrate, as refl ected in physio­
logical indices such as evoked 
potentials. 

ent neural assemblies are presumably specialized for various aspects of informa­
tion process ing. The processes in this model, depicted here as being closely 
connected with some biological substrate, can all be measured by means of 
chronometric tasks, either directly or through derived scores. By subtraction of 
response latencies of simple tasks from the latencies of more complex tasks, one 
can measure individual differences in the additional processes involved in the 
latter. 

Different sets of elementary processes, P, can be utilized by a given meta­
process (MP). Because metaprocesses are further removed from the biologic 
substrate and are probably mainly products of learning and practice, their con­
nection to the biologic substrate is via the elementary processes which enter into 
the metaprocesses. Different metaprocesses are intercorrelated because they 
share certain elementary processes in common and also because the experiential 
factors which inculcate metaprocesses are correlated in the educational and cul­
tural environment. It is probably at the level of metaprocesses that cultural 
differences have their primary impact. 

Both processes and metaprocesses enter into performance on complex psycho­
metric tests (n. Even a single complex test item may well depend on a number of 
Ps and MPs for successful performance . Various tests are intercorrelated, more­
over, not only because they share certain common Ps and MPs, but also because 
they may share common information stored in long-term memory . Note that at 
each level in this hierarchy , something new is added in terms of environmental 
inputs. The cumulative impact of these acquired elements is at its max imum at 
the level of single items in psychometric tests. Item variance is largely specifici­
ty, which may arise from individuals' idiosyncratic experiences, making for 
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unique and uncorrelated bits of information, or from complex and unique interac­
tions among the P and MP demands and the informational content of a PaI1icuiar 
test item. In fact, all primary psychological measurements are saturated with 
task-specific variance. Chronometric measurements of elementary processes in 
specially contrived laboratory tasks are no exception. Specificity, which is the 
bane of individual differences research, can be reduced only by using composite 
scores or factor scores (which are a particular weighted composite of the compo­
nent scores) derived from a number of varied tasks or tests, thereby "averaging 
out" the specificity of the individual tasks . 

The top part of the hierarchy in Fig. 4.9, including T, F, and gp, encompasses 
the realm of traditional psychometrics, including various test scores and hier­
archical factors extracted by factor analysis. Here, for the sake of simplicity, are 
represented only two first-order factors (F I and F2 ) and one second-order factor, 
psychometric g, or gpo (The most general factor, of course, may emerge as a 
third-order or other higher-order factor.) Each successively higher factor level 
excludes some sources of variance. The primary factors, for example, exclude 
the test-specific variance, and the second-order factors exclude the variance that 
is peculiar to each primary factor, and so on. The most general factor, gp, is the 
variance common to all the sources below it in the hierarchy . 

Some homogeneous tests , such as Raven's Progressive Matrices , contain 
relatively little specificity and are therefore quite good measures of gpo Other 
tests, like the Wechsler scales, although containing quite heterogeneous items 
and subtests with considerable specificity, yield composite scores from which, in 
effect, the specificity is "averaged out," providing a good measure of gpo 

Superficially very different tests, such as Verbal Analogies, Digit Span, and 
Block Designs, are intercorrelated presumably not because of common content 
or correlated educational experiences, but because they have a number of ele­
mentary processes and metaprocesses in common. Because the more superficial 
differences between tests contribute mainly to their specificities, these dif­
ferences are not reflected in gpo Hence it has been found that g factor scores are 
more highly correlated with chronometric measures of elementary processes than 
are any particular types of tests. Thus, although gp and PI' P2 , etc., appear 
widely separated in the schematic hierarchy , they actually seem to have greater 
variance overlap, as shown by the correlation, than do some of the more prox­
imal variables. This picture may also help to elucidate the otherwise surprising 
finding that, although gp is derived from factor analysis of psychometric tests 
which bear virtually no superficial resemblance in format, content, or method of 
administration to the RT techniques used in elementary cognitive tasks (ECTs) , 
gp shows correlations with ECTs almost as large as with the psychometric tests 
from which gp is derived. 

One of the crucial theoretical questions, with reference to Fig. 4.9, regarding 
which there is presently little consensus, is whether more of the variance in 
psychometric g (g,) is attributable to the processes (P) or to the metaprocesses 
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(MP). The learned information content in the psychometric tests (n can already 
be virtually ruled out as an important source of g variance, because tests that 
differ markedly in their information content, such as vocabulary and matrices, 
are nevertheless highly saturated with one and the same g. The multiple correla­
tion of several simple ECTs with gp has been so substantial in some studies as to 
suggest that perhaps as much as 50% of the gp variance is accounted for by 
individual differences in elementary cognitive processes. If task specificity were 
further minimized in such studies , by using at least three or four different tech­
niques for measuring each of the elementary processes that have already been 
shown to yield substantial correlations, it seems likely that even more than half 
of the g variance would be associated with the elementary processing variables. 
Also, the existing studies have not taken sufficient account of the reliability of 
these processing measures. Proper corrections for attenuation might appreciably 
raise the correlations between ECTs and gpo Split-half or other internal con­
sistency estimates of the reliability of ECTs usually overestimate the test-retest 
reliability, and it is the test-retest reliability which should be used in correcting 
correlations for attenuation when the correlated measurements have been ob­
tained in different test sessions, on different days , for example, or even at 
different times of the same day, such as before and after lunch. Some of the ECT 
measurements are so highly sensitive to an individual's fluctuating physiological 
state from morning till night and from day to day as to have quite low test-retest 
reliability as compared with most psychometric tests. Theoretical interest, of 
course, focuses on the true-score multiple correlation between the elementary 
cognitive processes and gpo Individual differences in metaprocesses, or strat­
egies, might even obscure task correlations with g. Hughes (1983), for example, 
found that a measure of learning rate is more highly correlated (r = - .59 , p < 
.001) with g (i.e., Raven Matrices) when all subjects are constrained by instruc­
tions to use the same strategy for learning than when they are not so instructed 
and can choose their own strategies (r = + .16, n.s.). This is just the opposite of 
what one should predict if metacomponents (strategies) were the chief sources of 
variance in learning rates or in g. One goal of componential research is to 
determine the proportions of variance in g accounted for by each of a number of 
clearly identifiable processes and metaprocesses . This has not yet been accom­
plished. 

There is a crucial difference between factors and processes that is often 
overlooked . Factors arise completely out of individual differences , and factors, 
including g, reflect only individual differences in whatever causal mechanisms 
are involved in the factors. Because of their exclusive dependence on variance, 
therefore, factors do not necessarily represent the operating principles of the 
mind . Processes that were so essential to individual survival in the course of 
human evolution as to be left with little or no genetic variance would not show up 
as factors. As far as I know, it has not been determined if there are any cognitive 
processes of this nature , that is, processes that might show age differences but 
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not reliable individual differences among biologically normal, healthy persons. It 
is at least a safe assumption that various processes may differ in the extent of 
their individual differences variance, and this can be assessed when individual 
differences are measured chronometrically, since such measures are on a ratio 
scale, which permits comparisons of variability based on the coefficient of varia­
tion (V = (J/f!.-). The point is that processes will be reflected in factors in 
proportion to their coefficients of variation. (For example, the g factor is always 
smaller, relative to other factors, in college students than in the general popula­
tion, because students are selected essentially on g.) Unlike a factor, a process 
can be identified and its importance in the mental economy assessed without 
need to take account of individual differences. RT is measured on a task (e.g., 
simple RT) which it is hypothesized requires processes A and B, and RT is 
measured on a task (e.g. , choice RT) which requires processes A, B, and C. The 
difference in milliseconds beween the mean RTs on the two tasks is taken as 
evidence for process C and indicates its magnitude in relation to other processes 
assessed by the same type of experimental paradigm, known as the subtraction 
method, originated by Donders (1868 - 6911969) in the early years of mental 
chronometry. The processes that best account for g will not necessarily be those 
that experimental cognitive research determines are the most important in terms 
of their mean effects, but those on which there is the largest variance. These two 
features of processes mayor may not be related. 

Although Sternberg believes that the bulk of g is attributable to variance in 
metaprocesses, this view is not an essential feature of componential theories in 
general. Moreover, its truth has not yet been demonstrated. A proper test would 
logically require that an adequate number of measures of elementary cognitive 
processes be entered first into the stepwise multiple regression, fo llowed by the 
metaprocess measures, for predicting g factor scores, thereby determining the 
independent contribution of metaprocess to the variance in g. The outcome of 
such a study would be of great theoretical importance. My guess at this point is 
that Sternberg'S belief is wrong, and that most of the g variance will be account­
able in terms of elementary cognitive processes, with little if any variance left for 
the residualized metaprocesses. I conjecture that the opposite would be found for 
many narrow group factors or, in particular, certain types of tasks that lend 
themselves to various strategies. A lack of some clear demarcation between 
processes and metaprocesses would invite further debate. Studies permitting 
"strong inference" are most needed. 

If processes (or metaprocesses) are uncorrelated, then, of course, we must 
explain g in terms of a number of common processes that enter into performance 
on a wide variety of tests. This seems to be the gist of Sternberg'S componential 
theory of g (Sternberg & Gardner, 1982). But if the processes themselves are 
correlated with each other and yield a g much like psychometric g, then the 
theoretical picture is quite different. How do we explain the correlations between 
the process measures? In terms of sti ll other, even more elemental, processes? 
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And what if they too are correlated? How far down the reductionist hierarchy will 
this "infinite regress" extend? 

There is every indication that elementary cognitive processes are, in fact, 
quite highly correlated. This fact has frustrated some of Sternberg's componen­
tial analyses, the clarity of which depends on there not being very high correla­
tions between measures of putatively different processes. For example , Stern­
berg and Gardner (1982 , p. 249), using chronometric techniques, measured 
individual differences in three different tasks which were intended to yield pa­
rameter estimates of three distinct components. But the three tasks (analogies 
[AJ, classification [CJ, and series completion [S]) were all so highly correlated 
(r AC = .86, r AS = .85, r cs = .88) that when the common factor was partialled 
out, the little remaining variance attributed to the residualized components was 
unreliable. The loadings of the three tasks on their common factor are A = .91, 
C = .94 , S = .93, without correction for attenuation. It leaves one to wonder if 
there are individual differences in components independent of the common fac­
tor, which may be the ubiquitous g. Sternberg himself has specifically noted that 
when the time taken for each of the component processes in his chronometric 
analogies tasks are factor analyzed with psychometric reference tests of g, indi­
vidual differences in the average time for all the components (what Sternberg 
calls the regression constant) show a higher correlation with g than any of the 
single component latencies. Sternberg (I979a) writes: 

Information-processing analyses of a variety of tasks have revealed that the "re­
gression constant" is often the individual differences parameter most high ly corre­
lated with scores on general intelligence tests. This constant measures variation that 
is constant across all of the item or task manipulations that are analyzed via 
multiple regression. The regression constant seems to bear at least some parallels to 
the general factor. (p. 24) 

Referring to the same point elsewhere, Sternberg (l979b) says this about the 
"regression constant": " ... we can feel pleased to be rediscovering Spear­
man's g in information processing terms." This is not an admission of failure for 
the componential theory of g, but an important discovery for which Sternberg 
deserves credit. But it also suggests that the search for g has to be pushed below 
the level of metaprocesses and elementary cognitive processes . Look again at 
where that leads us in terms of Fig . 4.9 . Any kind of sampling theory , at least at 
the level of cognitive processes, may prove wholly unnecessary for explaining g. 
Do people differ in psychometric g because they are strong or weak on different 
components? Or is the g of the processing components essentially the same as 
psychometric g? Although there are distinctly different information processes, as 
demonstrated in experimental mental chronometry (e.g. , Posner, 1978), indi­
vidual differences in these processes may be very highly correlated because of 
some general property of the nervous system that acts in all of them. 
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One of the best known ECTs, the S. Sternberg short-term memory scanning 
paradigm (S. Sternberg, 1966, 1975), can be used to illustrate the problem of 
seeking the explanation of g in terms of tests sampling a number of elementary 
cognitive processes that are common to many tests, but which are themselves so 
saturated with some common source of variance, perhaps the same g they are 
intended to explain, as to force us to seek the explanation of g at a still more basic 
level of analysis . In the Sternberg memory-scan (M-scan) paradigm, the subject 
is shown (either simultaneously or sequentially) a set of digits, varying in set size 
(s) from 1 to 7 digits. After the subject has studied the series (termed the positive 
set) for a few seconds, the set disappears , and 1 or 2 seconds later a single target 
digit appears on the screen. The subject responds as quickly as possible by 
pressing buttons labeled either YES or NO in terms of whether the target digit 
was or was not a member of the positive set. The subject's RT is measured in 
milliseconds . Numerous studies have shown that it takes slightly longer to re­
spond NO than YES, and RT increases as a linear function of set size. (The serial 
position of the target digit in the positive set has no effect on the RT.) Studies 
have also shown that the intercept and slope of this function, or the overall mean 
RT, are negatively correlated with psychometric g (e.g., Chiang & Atkinson , 
1976; Keating & Bobbitt, 1978; McCauley, Dugas, Kellas, & DeVellis, 1976). 

The intercept of the linear function relating RT to set size reflects E, the time 
required for encoding the target digit; B, the time for making a binary decision 
(Yes or No); and R, response production (releasing or pressing a button). The 
slope of the function reflects S, the speed of scanning short-term memory, 
specifically the time required per digit. A subject's mean RT for any given set 
size is hypothesized to comprise the time required for each of the information­
processing components (i.e., E, B, R, S). 

The reverse of this M-scan paradigm is called visual scan (V-scan) . Every­
thing is exactly the same except that the single target digit is presented first, 
followed by the positive set. The subject must visually scan the positive set and 
respond YES or NO as to the presence or absence of the target digit in the 
positive set. No scanning of STM is involved, just visual scanning of the phys­
ically displayed set of digits. 

Visual scanning and STM memory scanning are obviously completely differ­
ent processes . Yet in the four studies in which both the V -scan and M-scan 
paradigms have been used with the same group of subjects, there were no 
significant differences between V -scan and M-scan in intercepts, slopes , or 
overall mean RT (Ananda, 1985; Chiang & Atkinson, 1976; Gilford & luola , 
1976; Wade, 1984) . But the really important point, in terms of implications for 
the componential sampling theory of g, is the finding that individual differences 
in the RT parameters are very highly correlated across the V-scan and M-scan 
tasks, so much so , in fact, as to swamp the possibility of demonstrating any 
independent abilities in the two types of task. Ananda (1985) found a correlation 
of + .69 between mean RTs on M-scan and V -scan; Wade (1984) found a 
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correlation of + .85. There is no telling how much higher these correlations 
would be if they could be corrected for attenuation. (Neither study determined 
test-retest reliability.) Chiang and Atkinson (1976) gave their subjects more trials 
and therefore obtained considerably more reliable measurements of individual 
differences. Their correlation between V-scan and M-scan was + .97 for inter­
cepts and + .83 for slopes. These very high correlations (not corrected for at­
tenuation) were obtained despite the restricted range of ability in the Stanford 
University students who served as subjects . (Corrected for attenuation [using 
Day 2-Day 3 test-retest reliabi lity], the above correlations are 1.20 and 1. 13, 
respectively.) Chiang and Atkinson state, "It might be argued that performance 
on these search tasks is related to a general factor, speed, and that it is not useful 
to break down performance into several component processes or to distinguish 
between parameters of these processes" (p. 668). But this conclusion is a nonse­
quitur. Distinctly different processes may be involved in M-scan and V-scan, but 
the different processes may not be distinguishable in terms of individual dif­
ferences because some more basic general factor that affects speed in all cog­
nitive operations is common to both processes . In fact, we generally find such 
high correlations among the RTs to various ECTs that only one factor accounts 
for nearly all of the intercorrelation among the ECTs. Nonspeeded psychometric 
tests of g also have considerable loadings on the same general speed factor. 

If the condition I have described with respect to the M-scan and V -scan tasks 
is found in future research to be generally typical of most other ECTs that 
presumably involve distinctly different processes , and if it is their largest com­
mon factor , rather than any subordinate factors, that is correlated with psycho­
metric g, it would seem clear that an adequate theory of g will most probably 
have to invoke some even more basic level of analysis than is provided by the 
processing-component sampling theory . It seems likely that continuing effort to 
achieve a scientifically adequate theory of one of the most controversial psycho­
logical constructs will force it out of psychology altogether and arrive at an 
empirically testable formulation in genuinely physiological terms . But this may 
be the ultimate fate of any truly important construct of psychology . Is it not the 
ultimate "psychologists' fa llacy" to be satisfied with a psychological explana­
tion of a psychological phenomenon? 
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APPENDIX 

Two types of RT apparatus were used . The first is shown in Figure A. Templates 
are placed over the console, expos ing either I , 2, 4, or 8 of the light-button 
combinations. When one of the lights goes on , the subject removes his finger 
from the central home button and presses a button adjacent to the light, which 
puts out the light. Fifteen trials are given at each level of complexity- I , 2, 4, or 
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FIG. A. Subject's console of the reaction time aparatus. Pushbuttons indicated 
by circles, green jewelled lights by ci rcled crosses. The " home" button is in the 
lower center. 

8 light-buttons. RT is the time taken to get off the home button after one of the 
lights goes on. I shall refer to this task simply as the RT task (RT). The other 
tasks all use a two-choice console pictured in Figure B. In the Memory Scan task 
(DIGIT), a set of digits consisting of anywhere from I to 7 digits is simul­
taneously presented for 2 seconds on the display screen. After a I-second inter­
val, a single probe digit appears on the screen. The subject's task is to respond as 
quickly as possible, indicating whether or not the probe was a member of the set 
that had previously appeared by raising his index finger from the home button 
and pushing one of the two choice buttons labeled " yes" and "no." The 
subject's RT is the interval between the onset of the probe digit and the subject's 
releasing the home button. The subject's score (the average of his RTs to 84 such 
digit sets) provides a measure of the speed of short-term memory processing, that 
is, the speed with which information held in short-term memory can be scanned 
and retrieved. 

The Same- Different tasks (SD2) measures the speed of visual discrimination 
of pairs of simple words that are physically the same or different, for example, 
DOG- DOG or DOG- LOG. The instant that each of 26 pairs of the same or 
different words is presented, the subject raises his finger from the home button 
and presses one of the two choice buttons labeled S (same) and D (different). 
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FIG. B. SUbject's console used for the digit memory scan, physically same­
different words, and synonyms-antonyms test , showing display sc reen , the two­
choice response buttons , and the " horne" button (lower center). 

Again, the subject's RT is the average interval between onset of the word pair 
and releasing the home button. 

The Synonym- Antonym task (SA2) works much the same way, but in this test 
pairs of words are presented that are semantically either similar or opposite in 
meaning , for example, BIG- LARGE or BIG- LITTLE. All the synonyms and 
antonyms are composed of extremely common, high-frequency words , and all 
items can be answered correctly by virtually any third-grader under non speeded 
test conditions. The only reliable source of individual differences is the speed 
with which the decisions are made. This task measures the subject's speed of 
access to highly overlearned verbal codes stored in long-term memory . 

In the Dual Processing tasks, the subject is required to do two things, thus 
creating some degree of cognitive trade-off, or processing efficiency loss, be­
tween storage of information in short-term memory and retrieval of semantic 
information from long-term memory. In this task, we sequentially combine the 
digit Memory Scan task and the Same- Different task, or the Memory Scan task 
and the Synonyms-Antonyms task. First, the subject is presented with a set of 1 
to 7 digits for 2 seconds. This presentation is immediately followed by a Same­
Different (or Synonym-Antonym) word pair, and the subject must respond 
"same" or different" (pressing buttons labeled S or D) . Next, the probe digit 
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appears, and he must respond " yes" or " no" to indicate whether or not the 
probe was a member of the digit set shown previously. The RT (release of home 
button) is measured for the Same-Different responses to the words (DT2 
WORDS) and for the yes- no responses to the probe digits (DT2 DIGITS). The 
very same dual task procedure is also used with synonyms-antonyms (in place of 
physically same-different words) and digits (DT3 WORDS and DT3 DIGITS). 
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